jfdctflt-sse.asm 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355
  1. ;
  2. ; jfdctflt.asm - floating-point FDCT (64-bit SSE)
  3. ;
  4. ; Copyright 2009 Pierre Ossman <ossman@cendio.se> for Cendio AB
  5. ; Copyright (C) 2009, 2016, D. R. Commander.
  6. ;
  7. ; Based on the x86 SIMD extension for IJG JPEG library
  8. ; Copyright (C) 1999-2006, MIYASAKA Masaru.
  9. ; For conditions of distribution and use, see copyright notice in jsimdext.inc
  10. ;
  11. ; This file should be assembled with NASM (Netwide Assembler),
  12. ; can *not* be assembled with Microsoft's MASM or any compatible
  13. ; assembler (including Borland's Turbo Assembler).
  14. ; NASM is available from http://nasm.sourceforge.net/ or
  15. ; http://sourceforge.net/project/showfiles.php?group_id=6208
  16. ;
  17. ; This file contains a floating-point implementation of the forward DCT
  18. ; (Discrete Cosine Transform). The following code is based directly on
  19. ; the IJG's original jfdctflt.c; see the jfdctflt.c for more details.
  20. %include "jsimdext.inc"
  21. %include "jdct.inc"
  22. ; --------------------------------------------------------------------------
  23. %macro unpcklps2 2 ; %1=(0 1 2 3) / %2=(4 5 6 7) => %1=(0 1 4 5)
  24. shufps %1, %2, 0x44
  25. %endmacro
  26. %macro unpckhps2 2 ; %1=(0 1 2 3) / %2=(4 5 6 7) => %1=(2 3 6 7)
  27. shufps %1, %2, 0xEE
  28. %endmacro
  29. ; --------------------------------------------------------------------------
  30. SECTION SEG_CONST
  31. alignz 32
  32. GLOBAL_DATA(jconst_fdct_float_sse)
  33. EXTN(jconst_fdct_float_sse):
  34. PD_0_382 times 4 dd 0.382683432365089771728460
  35. PD_0_707 times 4 dd 0.707106781186547524400844
  36. PD_0_541 times 4 dd 0.541196100146196984399723
  37. PD_1_306 times 4 dd 1.306562964876376527856643
  38. alignz 32
  39. ; --------------------------------------------------------------------------
  40. SECTION SEG_TEXT
  41. BITS 64
  42. ;
  43. ; Perform the forward DCT on one block of samples.
  44. ;
  45. ; GLOBAL(void)
  46. ; jsimd_fdct_float_sse(FAST_FLOAT *data)
  47. ;
  48. ; r10 = FAST_FLOAT *data
  49. %define wk(i) rbp - (WK_NUM - (i)) * SIZEOF_XMMWORD ; xmmword wk[WK_NUM]
  50. %define WK_NUM 2
  51. align 32
  52. GLOBAL_FUNCTION(jsimd_fdct_float_sse)
  53. EXTN(jsimd_fdct_float_sse):
  54. push rbp
  55. mov rax, rsp ; rax = original rbp
  56. sub rsp, byte 4
  57. and rsp, byte (-SIZEOF_XMMWORD) ; align to 128 bits
  58. mov [rsp], rax
  59. mov rbp, rsp ; rbp = aligned rbp
  60. lea rsp, [wk(0)]
  61. collect_args 1
  62. ; ---- Pass 1: process rows.
  63. mov rdx, r10 ; (FAST_FLOAT *)
  64. mov rcx, DCTSIZE/4
  65. .rowloop:
  66. movaps xmm0, XMMWORD [XMMBLOCK(2,0,rdx,SIZEOF_FAST_FLOAT)]
  67. movaps xmm1, XMMWORD [XMMBLOCK(3,0,rdx,SIZEOF_FAST_FLOAT)]
  68. movaps xmm2, XMMWORD [XMMBLOCK(2,1,rdx,SIZEOF_FAST_FLOAT)]
  69. movaps xmm3, XMMWORD [XMMBLOCK(3,1,rdx,SIZEOF_FAST_FLOAT)]
  70. ; xmm0=(20 21 22 23), xmm2=(24 25 26 27)
  71. ; xmm1=(30 31 32 33), xmm3=(34 35 36 37)
  72. movaps xmm4, xmm0 ; transpose coefficients(phase 1)
  73. unpcklps xmm0, xmm1 ; xmm0=(20 30 21 31)
  74. unpckhps xmm4, xmm1 ; xmm4=(22 32 23 33)
  75. movaps xmm5, xmm2 ; transpose coefficients(phase 1)
  76. unpcklps xmm2, xmm3 ; xmm2=(24 34 25 35)
  77. unpckhps xmm5, xmm3 ; xmm5=(26 36 27 37)
  78. movaps xmm6, XMMWORD [XMMBLOCK(0,0,rdx,SIZEOF_FAST_FLOAT)]
  79. movaps xmm7, XMMWORD [XMMBLOCK(1,0,rdx,SIZEOF_FAST_FLOAT)]
  80. movaps xmm1, XMMWORD [XMMBLOCK(0,1,rdx,SIZEOF_FAST_FLOAT)]
  81. movaps xmm3, XMMWORD [XMMBLOCK(1,1,rdx,SIZEOF_FAST_FLOAT)]
  82. ; xmm6=(00 01 02 03), xmm1=(04 05 06 07)
  83. ; xmm7=(10 11 12 13), xmm3=(14 15 16 17)
  84. movaps XMMWORD [wk(0)], xmm4 ; wk(0)=(22 32 23 33)
  85. movaps XMMWORD [wk(1)], xmm2 ; wk(1)=(24 34 25 35)
  86. movaps xmm4, xmm6 ; transpose coefficients(phase 1)
  87. unpcklps xmm6, xmm7 ; xmm6=(00 10 01 11)
  88. unpckhps xmm4, xmm7 ; xmm4=(02 12 03 13)
  89. movaps xmm2, xmm1 ; transpose coefficients(phase 1)
  90. unpcklps xmm1, xmm3 ; xmm1=(04 14 05 15)
  91. unpckhps xmm2, xmm3 ; xmm2=(06 16 07 17)
  92. movaps xmm7, xmm6 ; transpose coefficients(phase 2)
  93. unpcklps2 xmm6, xmm0 ; xmm6=(00 10 20 30)=data0
  94. unpckhps2 xmm7, xmm0 ; xmm7=(01 11 21 31)=data1
  95. movaps xmm3, xmm2 ; transpose coefficients(phase 2)
  96. unpcklps2 xmm2, xmm5 ; xmm2=(06 16 26 36)=data6
  97. unpckhps2 xmm3, xmm5 ; xmm3=(07 17 27 37)=data7
  98. movaps xmm0, xmm7
  99. movaps xmm5, xmm6
  100. subps xmm7, xmm2 ; xmm7=data1-data6=tmp6
  101. subps xmm6, xmm3 ; xmm6=data0-data7=tmp7
  102. addps xmm0, xmm2 ; xmm0=data1+data6=tmp1
  103. addps xmm5, xmm3 ; xmm5=data0+data7=tmp0
  104. movaps xmm2, XMMWORD [wk(0)] ; xmm2=(22 32 23 33)
  105. movaps xmm3, XMMWORD [wk(1)] ; xmm3=(24 34 25 35)
  106. movaps XMMWORD [wk(0)], xmm7 ; wk(0)=tmp6
  107. movaps XMMWORD [wk(1)], xmm6 ; wk(1)=tmp7
  108. movaps xmm7, xmm4 ; transpose coefficients(phase 2)
  109. unpcklps2 xmm4, xmm2 ; xmm4=(02 12 22 32)=data2
  110. unpckhps2 xmm7, xmm2 ; xmm7=(03 13 23 33)=data3
  111. movaps xmm6, xmm1 ; transpose coefficients(phase 2)
  112. unpcklps2 xmm1, xmm3 ; xmm1=(04 14 24 34)=data4
  113. unpckhps2 xmm6, xmm3 ; xmm6=(05 15 25 35)=data5
  114. movaps xmm2, xmm7
  115. movaps xmm3, xmm4
  116. addps xmm7, xmm1 ; xmm7=data3+data4=tmp3
  117. addps xmm4, xmm6 ; xmm4=data2+data5=tmp2
  118. subps xmm2, xmm1 ; xmm2=data3-data4=tmp4
  119. subps xmm3, xmm6 ; xmm3=data2-data5=tmp5
  120. ; -- Even part
  121. movaps xmm1, xmm5
  122. movaps xmm6, xmm0
  123. subps xmm5, xmm7 ; xmm5=tmp13
  124. subps xmm0, xmm4 ; xmm0=tmp12
  125. addps xmm1, xmm7 ; xmm1=tmp10
  126. addps xmm6, xmm4 ; xmm6=tmp11
  127. addps xmm0, xmm5
  128. mulps xmm0, [rel PD_0_707] ; xmm0=z1
  129. movaps xmm7, xmm1
  130. movaps xmm4, xmm5
  131. subps xmm1, xmm6 ; xmm1=data4
  132. subps xmm5, xmm0 ; xmm5=data6
  133. addps xmm7, xmm6 ; xmm7=data0
  134. addps xmm4, xmm0 ; xmm4=data2
  135. movaps XMMWORD [XMMBLOCK(0,1,rdx,SIZEOF_FAST_FLOAT)], xmm1
  136. movaps XMMWORD [XMMBLOCK(2,1,rdx,SIZEOF_FAST_FLOAT)], xmm5
  137. movaps XMMWORD [XMMBLOCK(0,0,rdx,SIZEOF_FAST_FLOAT)], xmm7
  138. movaps XMMWORD [XMMBLOCK(2,0,rdx,SIZEOF_FAST_FLOAT)], xmm4
  139. ; -- Odd part
  140. movaps xmm6, XMMWORD [wk(0)] ; xmm6=tmp6
  141. movaps xmm0, XMMWORD [wk(1)] ; xmm0=tmp7
  142. addps xmm2, xmm3 ; xmm2=tmp10
  143. addps xmm3, xmm6 ; xmm3=tmp11
  144. addps xmm6, xmm0 ; xmm6=tmp12, xmm0=tmp7
  145. mulps xmm3, [rel PD_0_707] ; xmm3=z3
  146. movaps xmm1, xmm2 ; xmm1=tmp10
  147. subps xmm2, xmm6
  148. mulps xmm2, [rel PD_0_382] ; xmm2=z5
  149. mulps xmm1, [rel PD_0_541] ; xmm1=MULTIPLY(tmp10,FIX_0_541196)
  150. mulps xmm6, [rel PD_1_306] ; xmm6=MULTIPLY(tmp12,FIX_1_306562)
  151. addps xmm1, xmm2 ; xmm1=z2
  152. addps xmm6, xmm2 ; xmm6=z4
  153. movaps xmm5, xmm0
  154. subps xmm0, xmm3 ; xmm0=z13
  155. addps xmm5, xmm3 ; xmm5=z11
  156. movaps xmm7, xmm0
  157. movaps xmm4, xmm5
  158. subps xmm0, xmm1 ; xmm0=data3
  159. subps xmm5, xmm6 ; xmm5=data7
  160. addps xmm7, xmm1 ; xmm7=data5
  161. addps xmm4, xmm6 ; xmm4=data1
  162. movaps XMMWORD [XMMBLOCK(3,0,rdx,SIZEOF_FAST_FLOAT)], xmm0
  163. movaps XMMWORD [XMMBLOCK(3,1,rdx,SIZEOF_FAST_FLOAT)], xmm5
  164. movaps XMMWORD [XMMBLOCK(1,1,rdx,SIZEOF_FAST_FLOAT)], xmm7
  165. movaps XMMWORD [XMMBLOCK(1,0,rdx,SIZEOF_FAST_FLOAT)], xmm4
  166. add rdx, 4*DCTSIZE*SIZEOF_FAST_FLOAT
  167. dec rcx
  168. jnz near .rowloop
  169. ; ---- Pass 2: process columns.
  170. mov rdx, r10 ; (FAST_FLOAT *)
  171. mov rcx, DCTSIZE/4
  172. .columnloop:
  173. movaps xmm0, XMMWORD [XMMBLOCK(2,0,rdx,SIZEOF_FAST_FLOAT)]
  174. movaps xmm1, XMMWORD [XMMBLOCK(3,0,rdx,SIZEOF_FAST_FLOAT)]
  175. movaps xmm2, XMMWORD [XMMBLOCK(6,0,rdx,SIZEOF_FAST_FLOAT)]
  176. movaps xmm3, XMMWORD [XMMBLOCK(7,0,rdx,SIZEOF_FAST_FLOAT)]
  177. ; xmm0=(02 12 22 32), xmm2=(42 52 62 72)
  178. ; xmm1=(03 13 23 33), xmm3=(43 53 63 73)
  179. movaps xmm4, xmm0 ; transpose coefficients(phase 1)
  180. unpcklps xmm0, xmm1 ; xmm0=(02 03 12 13)
  181. unpckhps xmm4, xmm1 ; xmm4=(22 23 32 33)
  182. movaps xmm5, xmm2 ; transpose coefficients(phase 1)
  183. unpcklps xmm2, xmm3 ; xmm2=(42 43 52 53)
  184. unpckhps xmm5, xmm3 ; xmm5=(62 63 72 73)
  185. movaps xmm6, XMMWORD [XMMBLOCK(0,0,rdx,SIZEOF_FAST_FLOAT)]
  186. movaps xmm7, XMMWORD [XMMBLOCK(1,0,rdx,SIZEOF_FAST_FLOAT)]
  187. movaps xmm1, XMMWORD [XMMBLOCK(4,0,rdx,SIZEOF_FAST_FLOAT)]
  188. movaps xmm3, XMMWORD [XMMBLOCK(5,0,rdx,SIZEOF_FAST_FLOAT)]
  189. ; xmm6=(00 10 20 30), xmm1=(40 50 60 70)
  190. ; xmm7=(01 11 21 31), xmm3=(41 51 61 71)
  191. movaps XMMWORD [wk(0)], xmm4 ; wk(0)=(22 23 32 33)
  192. movaps XMMWORD [wk(1)], xmm2 ; wk(1)=(42 43 52 53)
  193. movaps xmm4, xmm6 ; transpose coefficients(phase 1)
  194. unpcklps xmm6, xmm7 ; xmm6=(00 01 10 11)
  195. unpckhps xmm4, xmm7 ; xmm4=(20 21 30 31)
  196. movaps xmm2, xmm1 ; transpose coefficients(phase 1)
  197. unpcklps xmm1, xmm3 ; xmm1=(40 41 50 51)
  198. unpckhps xmm2, xmm3 ; xmm2=(60 61 70 71)
  199. movaps xmm7, xmm6 ; transpose coefficients(phase 2)
  200. unpcklps2 xmm6, xmm0 ; xmm6=(00 01 02 03)=data0
  201. unpckhps2 xmm7, xmm0 ; xmm7=(10 11 12 13)=data1
  202. movaps xmm3, xmm2 ; transpose coefficients(phase 2)
  203. unpcklps2 xmm2, xmm5 ; xmm2=(60 61 62 63)=data6
  204. unpckhps2 xmm3, xmm5 ; xmm3=(70 71 72 73)=data7
  205. movaps xmm0, xmm7
  206. movaps xmm5, xmm6
  207. subps xmm7, xmm2 ; xmm7=data1-data6=tmp6
  208. subps xmm6, xmm3 ; xmm6=data0-data7=tmp7
  209. addps xmm0, xmm2 ; xmm0=data1+data6=tmp1
  210. addps xmm5, xmm3 ; xmm5=data0+data7=tmp0
  211. movaps xmm2, XMMWORD [wk(0)] ; xmm2=(22 23 32 33)
  212. movaps xmm3, XMMWORD [wk(1)] ; xmm3=(42 43 52 53)
  213. movaps XMMWORD [wk(0)], xmm7 ; wk(0)=tmp6
  214. movaps XMMWORD [wk(1)], xmm6 ; wk(1)=tmp7
  215. movaps xmm7, xmm4 ; transpose coefficients(phase 2)
  216. unpcklps2 xmm4, xmm2 ; xmm4=(20 21 22 23)=data2
  217. unpckhps2 xmm7, xmm2 ; xmm7=(30 31 32 33)=data3
  218. movaps xmm6, xmm1 ; transpose coefficients(phase 2)
  219. unpcklps2 xmm1, xmm3 ; xmm1=(40 41 42 43)=data4
  220. unpckhps2 xmm6, xmm3 ; xmm6=(50 51 52 53)=data5
  221. movaps xmm2, xmm7
  222. movaps xmm3, xmm4
  223. addps xmm7, xmm1 ; xmm7=data3+data4=tmp3
  224. addps xmm4, xmm6 ; xmm4=data2+data5=tmp2
  225. subps xmm2, xmm1 ; xmm2=data3-data4=tmp4
  226. subps xmm3, xmm6 ; xmm3=data2-data5=tmp5
  227. ; -- Even part
  228. movaps xmm1, xmm5
  229. movaps xmm6, xmm0
  230. subps xmm5, xmm7 ; xmm5=tmp13
  231. subps xmm0, xmm4 ; xmm0=tmp12
  232. addps xmm1, xmm7 ; xmm1=tmp10
  233. addps xmm6, xmm4 ; xmm6=tmp11
  234. addps xmm0, xmm5
  235. mulps xmm0, [rel PD_0_707] ; xmm0=z1
  236. movaps xmm7, xmm1
  237. movaps xmm4, xmm5
  238. subps xmm1, xmm6 ; xmm1=data4
  239. subps xmm5, xmm0 ; xmm5=data6
  240. addps xmm7, xmm6 ; xmm7=data0
  241. addps xmm4, xmm0 ; xmm4=data2
  242. movaps XMMWORD [XMMBLOCK(4,0,rdx,SIZEOF_FAST_FLOAT)], xmm1
  243. movaps XMMWORD [XMMBLOCK(6,0,rdx,SIZEOF_FAST_FLOAT)], xmm5
  244. movaps XMMWORD [XMMBLOCK(0,0,rdx,SIZEOF_FAST_FLOAT)], xmm7
  245. movaps XMMWORD [XMMBLOCK(2,0,rdx,SIZEOF_FAST_FLOAT)], xmm4
  246. ; -- Odd part
  247. movaps xmm6, XMMWORD [wk(0)] ; xmm6=tmp6
  248. movaps xmm0, XMMWORD [wk(1)] ; xmm0=tmp7
  249. addps xmm2, xmm3 ; xmm2=tmp10
  250. addps xmm3, xmm6 ; xmm3=tmp11
  251. addps xmm6, xmm0 ; xmm6=tmp12, xmm0=tmp7
  252. mulps xmm3, [rel PD_0_707] ; xmm3=z3
  253. movaps xmm1, xmm2 ; xmm1=tmp10
  254. subps xmm2, xmm6
  255. mulps xmm2, [rel PD_0_382] ; xmm2=z5
  256. mulps xmm1, [rel PD_0_541] ; xmm1=MULTIPLY(tmp10,FIX_0_541196)
  257. mulps xmm6, [rel PD_1_306] ; xmm6=MULTIPLY(tmp12,FIX_1_306562)
  258. addps xmm1, xmm2 ; xmm1=z2
  259. addps xmm6, xmm2 ; xmm6=z4
  260. movaps xmm5, xmm0
  261. subps xmm0, xmm3 ; xmm0=z13
  262. addps xmm5, xmm3 ; xmm5=z11
  263. movaps xmm7, xmm0
  264. movaps xmm4, xmm5
  265. subps xmm0, xmm1 ; xmm0=data3
  266. subps xmm5, xmm6 ; xmm5=data7
  267. addps xmm7, xmm1 ; xmm7=data5
  268. addps xmm4, xmm6 ; xmm4=data1
  269. movaps XMMWORD [XMMBLOCK(3,0,rdx,SIZEOF_FAST_FLOAT)], xmm0
  270. movaps XMMWORD [XMMBLOCK(7,0,rdx,SIZEOF_FAST_FLOAT)], xmm5
  271. movaps XMMWORD [XMMBLOCK(5,0,rdx,SIZEOF_FAST_FLOAT)], xmm7
  272. movaps XMMWORD [XMMBLOCK(1,0,rdx,SIZEOF_FAST_FLOAT)], xmm4
  273. add rdx, byte 4*SIZEOF_FAST_FLOAT
  274. dec rcx
  275. jnz near .columnloop
  276. uncollect_args 1
  277. mov rsp, rbp ; rsp <- aligned rbp
  278. pop rsp ; rsp <- original rbp
  279. pop rbp
  280. ret
  281. ; For some reason, the OS X linker does not honor the request to align the
  282. ; segment unless we do this.
  283. align 32