/* Copyright (c) 2014, Google Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "internal.h" #include "../crypto/internal.h" #include "../crypto/test/test_util.h" #if defined(OPENSSL_WINDOWS) // Windows defines struct timeval in winsock2.h. OPENSSL_MSVC_PRAGMA(warning(push, 3)) #include OPENSSL_MSVC_PRAGMA(warning(pop)) #else #include #endif #if defined(OPENSSL_THREADS) #include #endif BSSL_NAMESPACE_BEGIN namespace { #define TRACED_CALL(code) \ do { \ SCOPED_TRACE("<- called from here"); \ code; \ if (::testing::Test::HasFatalFailure()) { \ return; \ } \ } while (false) struct VersionParam { uint16_t version; enum { is_tls, is_dtls } ssl_method; const char name[8]; }; static const size_t kTicketKeyLen = 48; static const VersionParam kAllVersions[] = { {TLS1_VERSION, VersionParam::is_tls, "TLS1"}, {TLS1_1_VERSION, VersionParam::is_tls, "TLS1_1"}, {TLS1_2_VERSION, VersionParam::is_tls, "TLS1_2"}, {TLS1_3_VERSION, VersionParam::is_tls, "TLS1_3"}, {DTLS1_VERSION, VersionParam::is_dtls, "DTLS1"}, {DTLS1_2_VERSION, VersionParam::is_dtls, "DTLS1_2"}, }; struct ExpectedCipher { unsigned long id; int in_group_flag; }; struct CipherTest { // The rule string to apply. const char *rule; // The list of expected ciphers, in order. std::vector expected; // True if this cipher list should fail in strict mode. bool strict_fail; }; struct CurveTest { // The rule string to apply. const char *rule; // The list of expected curves, in order. std::vector expected; }; template class UnownedSSLExData { public: UnownedSSLExData() { index_ = SSL_get_ex_new_index(0, nullptr, nullptr, nullptr, nullptr); } T *Get(const SSL *ssl) { return index_ < 0 ? nullptr : static_cast(SSL_get_ex_data(ssl, index_)); } bool Set(SSL *ssl, T *t) { return index_ >= 0 && SSL_set_ex_data(ssl, index_, t); } private: int index_; }; static const CipherTest kCipherTests[] = { // Selecting individual ciphers should work. { "ECDHE-ECDSA-CHACHA20-POLY1305:" "ECDHE-RSA-CHACHA20-POLY1305:" "ECDHE-ECDSA-AES128-GCM-SHA256:" "ECDHE-RSA-AES128-GCM-SHA256", { {TLS1_CK_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256, 0}, {TLS1_CK_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256, 0}, {TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, 0}, {TLS1_CK_ECDHE_RSA_WITH_AES_128_GCM_SHA256, 0}, }, false, }, // + reorders selected ciphers to the end, keeping their relative order. { "ECDHE-ECDSA-CHACHA20-POLY1305:" "ECDHE-RSA-CHACHA20-POLY1305:" "ECDHE-ECDSA-AES128-GCM-SHA256:" "ECDHE-RSA-AES128-GCM-SHA256:" "+aRSA", { {TLS1_CK_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256, 0}, {TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, 0}, {TLS1_CK_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256, 0}, {TLS1_CK_ECDHE_RSA_WITH_AES_128_GCM_SHA256, 0}, }, false, }, // ! banishes ciphers from future selections. { "!aRSA:" "ECDHE-ECDSA-CHACHA20-POLY1305:" "ECDHE-RSA-CHACHA20-POLY1305:" "ECDHE-ECDSA-AES128-GCM-SHA256:" "ECDHE-RSA-AES128-GCM-SHA256", { {TLS1_CK_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256, 0}, {TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, 0}, }, false, }, // Multiple masks can be ANDed in a single rule. { "kRSA+AESGCM+AES128", { {TLS1_CK_RSA_WITH_AES_128_GCM_SHA256, 0}, }, false, }, // - removes selected ciphers, but preserves their order for future // selections. Select AES_128_GCM, but order the key exchanges RSA, // ECDHE_RSA. { "ALL:-kECDHE:" "-kRSA:-ALL:" "AESGCM+AES128+aRSA", { {TLS1_CK_RSA_WITH_AES_128_GCM_SHA256, 0}, {TLS1_CK_ECDHE_RSA_WITH_AES_128_GCM_SHA256, 0}, }, false, }, // Unknown selectors are no-ops, except in strict mode. { "ECDHE-ECDSA-CHACHA20-POLY1305:" "ECDHE-RSA-CHACHA20-POLY1305:" "ECDHE-ECDSA-AES128-GCM-SHA256:" "ECDHE-RSA-AES128-GCM-SHA256:" "BOGUS1", { {TLS1_CK_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256, 0}, {TLS1_CK_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256, 0}, {TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, 0}, {TLS1_CK_ECDHE_RSA_WITH_AES_128_GCM_SHA256, 0}, }, true, }, // Unknown selectors are no-ops, except in strict mode. { "ECDHE-ECDSA-CHACHA20-POLY1305:" "ECDHE-RSA-CHACHA20-POLY1305:" "ECDHE-ECDSA-AES128-GCM-SHA256:" "ECDHE-RSA-AES128-GCM-SHA256:" "-BOGUS2:+BOGUS3:!BOGUS4", { {TLS1_CK_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256, 0}, {TLS1_CK_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256, 0}, {TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, 0}, {TLS1_CK_ECDHE_RSA_WITH_AES_128_GCM_SHA256, 0}, }, true, }, // Square brackets specify equi-preference groups. { "[ECDHE-ECDSA-CHACHA20-POLY1305|ECDHE-ECDSA-AES128-GCM-SHA256]:" "[ECDHE-RSA-CHACHA20-POLY1305]:" "ECDHE-RSA-AES128-GCM-SHA256", { {TLS1_CK_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256, 1}, {TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, 0}, {TLS1_CK_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256, 0}, {TLS1_CK_ECDHE_RSA_WITH_AES_128_GCM_SHA256, 0}, }, false, }, // Standard names may be used instead of OpenSSL names. { "[TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256|" "TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256]:" "[TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256]:" "TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256", { {TLS1_CK_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256, 1}, {TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, 0}, {TLS1_CK_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256, 0}, {TLS1_CK_ECDHE_RSA_WITH_AES_128_GCM_SHA256, 0}, }, false, }, // @STRENGTH performs a stable strength-sort of the selected ciphers and // only the selected ciphers. { // To simplify things, banish all but {ECDHE_RSA,RSA} x // {CHACHA20,AES_256_CBC,AES_128_CBC} x SHA1. "!AESGCM:!3DES:" // Order some ciphers backwards by strength. "ALL:-CHACHA20:-AES256:-AES128:-ALL:" // Select ECDHE ones and sort them by strength. Ties should resolve // based on the order above. "kECDHE:@STRENGTH:-ALL:" // Now bring back everything uses RSA. ECDHE_RSA should be first, sorted // by strength. Then RSA, backwards by strength. "aRSA", { {TLS1_CK_ECDHE_RSA_WITH_AES_256_CBC_SHA, 0}, {TLS1_CK_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256, 0}, {TLS1_CK_ECDHE_RSA_WITH_AES_128_CBC_SHA, 0}, {TLS1_CK_RSA_WITH_AES_128_SHA, 0}, {TLS1_CK_RSA_WITH_AES_256_SHA, 0}, }, false, }, // Additional masks after @STRENGTH get silently discarded. // // TODO(davidben): Make this an error. If not silently discarded, they get // interpreted as + opcodes which are very different. { "ECDHE-RSA-AES128-GCM-SHA256:" "ECDHE-RSA-AES256-GCM-SHA384:" "@STRENGTH+AES256", { {TLS1_CK_ECDHE_RSA_WITH_AES_256_GCM_SHA384, 0}, {TLS1_CK_ECDHE_RSA_WITH_AES_128_GCM_SHA256, 0}, }, false, }, { "ECDHE-RSA-AES128-GCM-SHA256:" "ECDHE-RSA-AES256-GCM-SHA384:" "@STRENGTH+AES256:" "ECDHE-RSA-CHACHA20-POLY1305", { {TLS1_CK_ECDHE_RSA_WITH_AES_256_GCM_SHA384, 0}, {TLS1_CK_ECDHE_RSA_WITH_AES_128_GCM_SHA256, 0}, {TLS1_CK_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256, 0}, }, false, }, // Exact ciphers may not be used in multi-part rules; they are treated // as unknown aliases. { "ECDHE-ECDSA-AES128-GCM-SHA256:" "ECDHE-RSA-AES128-GCM-SHA256:" "!ECDHE-RSA-AES128-GCM-SHA256+RSA:" "!ECDSA+ECDHE-ECDSA-AES128-GCM-SHA256", { {TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, 0}, {TLS1_CK_ECDHE_RSA_WITH_AES_128_GCM_SHA256, 0}, }, true, }, // SSLv3 matches everything that existed before TLS 1.2. { "AES128-SHA:ECDHE-RSA-AES128-GCM-SHA256:!SSLv3", { {TLS1_CK_ECDHE_RSA_WITH_AES_128_GCM_SHA256, 0}, }, false, }, // TLSv1.2 matches everything added in TLS 1.2. { "AES128-SHA:ECDHE-RSA-AES128-GCM-SHA256:!TLSv1.2", { {TLS1_CK_RSA_WITH_AES_128_SHA, 0}, }, false, }, // The two directives have no intersection. But each component is valid, so // even in strict mode it is accepted. { "AES128-SHA:ECDHE-RSA-AES128-GCM-SHA256:!TLSv1.2+SSLv3", { {TLS1_CK_RSA_WITH_AES_128_SHA, 0}, {TLS1_CK_ECDHE_RSA_WITH_AES_128_GCM_SHA256, 0}, }, false, }, // Spaces, semi-colons and commas are separators. { "AES128-SHA: ECDHE-RSA-AES128-GCM-SHA256 AES256-SHA ,ECDHE-ECDSA-AES128-GCM-SHA256 ; AES128-GCM-SHA256", { {TLS1_CK_RSA_WITH_AES_128_SHA, 0}, {TLS1_CK_ECDHE_RSA_WITH_AES_128_GCM_SHA256, 0}, {TLS1_CK_RSA_WITH_AES_256_SHA, 0}, {TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, 0}, {TLS1_CK_RSA_WITH_AES_128_GCM_SHA256, 0}, }, // …but not in strict mode. true, }, }; static const char *kBadRules[] = { // Invalid brackets. "[ECDHE-RSA-CHACHA20-POLY1305|ECDHE-RSA-AES128-GCM-SHA256", "RSA]", "[[RSA]]", // Operators inside brackets. "[+RSA]", // Unknown directive. "@BOGUS", // Empty cipher lists error at SSL_CTX_set_cipher_list. "", "BOGUS", // COMPLEMENTOFDEFAULT is empty. "COMPLEMENTOFDEFAULT", // Invalid command. "?BAR", // Special operators are not allowed if groups are used. "[ECDHE-RSA-CHACHA20-POLY1305|ECDHE-RSA-AES128-GCM-SHA256]:+FOO", "[ECDHE-RSA-CHACHA20-POLY1305|ECDHE-RSA-AES128-GCM-SHA256]:!FOO", "[ECDHE-RSA-CHACHA20-POLY1305|ECDHE-RSA-AES128-GCM-SHA256]:-FOO", "[ECDHE-RSA-CHACHA20-POLY1305|ECDHE-RSA-AES128-GCM-SHA256]:@STRENGTH", // Opcode supplied, but missing selector. "+", // Spaces are forbidden in equal-preference groups. "[AES128-SHA | AES128-SHA256]", }; static const char *kMustNotIncludeNull[] = { "ALL", "DEFAULT", "HIGH", "FIPS", "SHA", "SHA1", "RSA", "SSLv3", "TLSv1", "TLSv1.2", }; static const CurveTest kCurveTests[] = { { "P-256", { SSL_CURVE_SECP256R1 }, }, { "P-256:CECPQ2", { SSL_CURVE_SECP256R1, SSL_CURVE_CECPQ2 }, }, { "P-256:P-384:P-521:X25519", { SSL_CURVE_SECP256R1, SSL_CURVE_SECP384R1, SSL_CURVE_SECP521R1, SSL_CURVE_X25519, }, }, { "prime256v1:secp384r1:secp521r1:x25519", { SSL_CURVE_SECP256R1, SSL_CURVE_SECP384R1, SSL_CURVE_SECP521R1, SSL_CURVE_X25519, }, }, }; static const char *kBadCurvesLists[] = { "", ":", "::", "P-256::X25519", "RSA:P-256", "P-256:RSA", "X25519:P-256:", ":X25519:P-256", }; static std::string CipherListToString(SSL_CTX *ctx) { bool in_group = false; std::string ret; const STACK_OF(SSL_CIPHER) *ciphers = SSL_CTX_get_ciphers(ctx); for (size_t i = 0; i < sk_SSL_CIPHER_num(ciphers); i++) { const SSL_CIPHER *cipher = sk_SSL_CIPHER_value(ciphers, i); if (!in_group && SSL_CTX_cipher_in_group(ctx, i)) { ret += "\t[\n"; in_group = true; } ret += "\t"; if (in_group) { ret += " "; } ret += SSL_CIPHER_get_name(cipher); ret += "\n"; if (in_group && !SSL_CTX_cipher_in_group(ctx, i)) { ret += "\t]\n"; in_group = false; } } return ret; } static bool CipherListsEqual(SSL_CTX *ctx, const std::vector &expected) { const STACK_OF(SSL_CIPHER) *ciphers = SSL_CTX_get_ciphers(ctx); if (sk_SSL_CIPHER_num(ciphers) != expected.size()) { return false; } for (size_t i = 0; i < expected.size(); i++) { const SSL_CIPHER *cipher = sk_SSL_CIPHER_value(ciphers, i); if (expected[i].id != SSL_CIPHER_get_id(cipher) || expected[i].in_group_flag != !!SSL_CTX_cipher_in_group(ctx, i)) { return false; } } return true; } TEST(SSLTest, CipherRules) { for (const CipherTest &t : kCipherTests) { SCOPED_TRACE(t.rule); bssl::UniquePtr ctx(SSL_CTX_new(TLS_method())); ASSERT_TRUE(ctx); // Test lax mode. ASSERT_TRUE(SSL_CTX_set_cipher_list(ctx.get(), t.rule)); EXPECT_TRUE(CipherListsEqual(ctx.get(), t.expected)) << "Cipher rule evaluated to:\n" << CipherListToString(ctx.get()); // Test strict mode. if (t.strict_fail) { EXPECT_FALSE(SSL_CTX_set_strict_cipher_list(ctx.get(), t.rule)); } else { ASSERT_TRUE(SSL_CTX_set_strict_cipher_list(ctx.get(), t.rule)); EXPECT_TRUE(CipherListsEqual(ctx.get(), t.expected)) << "Cipher rule evaluated to:\n" << CipherListToString(ctx.get()); } } for (const char *rule : kBadRules) { SCOPED_TRACE(rule); bssl::UniquePtr ctx(SSL_CTX_new(TLS_method())); ASSERT_TRUE(ctx); EXPECT_FALSE(SSL_CTX_set_cipher_list(ctx.get(), rule)); ERR_clear_error(); } for (const char *rule : kMustNotIncludeNull) { SCOPED_TRACE(rule); bssl::UniquePtr ctx(SSL_CTX_new(TLS_method())); ASSERT_TRUE(ctx); ASSERT_TRUE(SSL_CTX_set_strict_cipher_list(ctx.get(), rule)); for (const SSL_CIPHER *cipher : SSL_CTX_get_ciphers(ctx.get())) { EXPECT_NE(NID_undef, SSL_CIPHER_get_cipher_nid(cipher)); } } } TEST(SSLTest, CurveRules) { for (const CurveTest &t : kCurveTests) { SCOPED_TRACE(t.rule); bssl::UniquePtr ctx(SSL_CTX_new(TLS_method())); ASSERT_TRUE(ctx); ASSERT_TRUE(SSL_CTX_set1_curves_list(ctx.get(), t.rule)); ASSERT_EQ(t.expected.size(), ctx->supported_group_list.size()); for (size_t i = 0; i < t.expected.size(); i++) { EXPECT_EQ(t.expected[i], ctx->supported_group_list[i]); } } for (const char *rule : kBadCurvesLists) { SCOPED_TRACE(rule); bssl::UniquePtr ctx(SSL_CTX_new(TLS_method())); ASSERT_TRUE(ctx); EXPECT_FALSE(SSL_CTX_set1_curves_list(ctx.get(), rule)); ERR_clear_error(); } } // kOpenSSLSession is a serialized SSL_SESSION. static const char kOpenSSLSession[] = "MIIFqgIBAQICAwMEAsAvBCAG5Q1ndq4Yfmbeo1zwLkNRKmCXGdNgWvGT3cskV0yQ" "kAQwJlrlzkAWBOWiLj/jJ76D7l+UXoizP2KI2C7I2FccqMmIfFmmkUy32nIJ0mZH" "IWoJoQYCBFRDO46iBAICASyjggR6MIIEdjCCA16gAwIBAgIIK9dUvsPWSlUwDQYJ" "KoZIhvcNAQEFBQAwSTELMAkGA1UEBhMCVVMxEzARBgNVBAoTCkdvb2dsZSBJbmMx" "JTAjBgNVBAMTHEdvb2dsZSBJbnRlcm5ldCBBdXRob3JpdHkgRzIwHhcNMTQxMDA4" "MTIwNzU3WhcNMTUwMTA2MDAwMDAwWjBoMQswCQYDVQQGEwJVUzETMBEGA1UECAwK" "Q2FsaWZvcm5pYTEWMBQGA1UEBwwNTW91bnRhaW4gVmlldzETMBEGA1UECgwKR29v" "Z2xlIEluYzEXMBUGA1UEAwwOd3d3Lmdvb2dsZS5jb20wggEiMA0GCSqGSIb3DQEB" "AQUAA4IBDwAwggEKAoIBAQCcKeLrplAC+Lofy8t/wDwtB6eu72CVp0cJ4V3lknN6" "huH9ct6FFk70oRIh/VBNBBz900jYy+7111Jm1b8iqOTQ9aT5C7SEhNcQFJvqzH3e" "MPkb6ZSWGm1yGF7MCQTGQXF20Sk/O16FSjAynU/b3oJmOctcycWYkY0ytS/k3LBu" "Id45PJaoMqjB0WypqvNeJHC3q5JjCB4RP7Nfx5jjHSrCMhw8lUMW4EaDxjaR9KDh" "PLgjsk+LDIySRSRDaCQGhEOWLJZVLzLo4N6/UlctCHEllpBUSvEOyFga52qroGjg" "rf3WOQ925MFwzd6AK+Ich0gDRg8sQfdLH5OuP1cfLfU1AgMBAAGjggFBMIIBPTAd" "BgNVHSUEFjAUBggrBgEFBQcDAQYIKwYBBQUHAwIwGQYDVR0RBBIwEIIOd3d3Lmdv" "b2dsZS5jb20waAYIKwYBBQUHAQEEXDBaMCsGCCsGAQUFBzAChh9odHRwOi8vcGtp" "Lmdvb2dsZS5jb20vR0lBRzIuY3J0MCsGCCsGAQUFBzABhh9odHRwOi8vY2xpZW50" "czEuZ29vZ2xlLmNvbS9vY3NwMB0GA1UdDgQWBBQ7a+CcxsZByOpc+xpYFcIbnUMZ" "hTAMBgNVHRMBAf8EAjAAMB8GA1UdIwQYMBaAFErdBhYbvPZotXb1gba7Yhq6WoEv" "MBcGA1UdIAQQMA4wDAYKKwYBBAHWeQIFATAwBgNVHR8EKTAnMCWgI6Ahhh9odHRw" "Oi8vcGtpLmdvb2dsZS5jb20vR0lBRzIuY3JsMA0GCSqGSIb3DQEBBQUAA4IBAQCa" "OXCBdoqUy5bxyq+Wrh1zsyyCFim1PH5VU2+yvDSWrgDY8ibRGJmfff3r4Lud5kal" "dKs9k8YlKD3ITG7P0YT/Rk8hLgfEuLcq5cc0xqmE42xJ+Eo2uzq9rYorc5emMCxf" "5L0TJOXZqHQpOEcuptZQ4OjdYMfSxk5UzueUhA3ogZKRcRkdB3WeWRp+nYRhx4St" "o2rt2A0MKmY9165GHUqMK9YaaXHDXqBu7Sefr1uSoAP9gyIJKeihMivsGqJ1TD6Z" "cc6LMe+dN2P8cZEQHtD1y296ul4Mivqk3jatUVL8/hCwgch9A8O4PGZq9WqBfEWm" "IyHh1dPtbg1lOXdYCWtjpAIEAKUDAgEUqQUCAwGJwKqBpwSBpBwUQvoeOk0Kg36S" "YTcLEkXqKwOBfF9vE4KX0NxeLwjcDTpsuh3qXEaZ992r1N38VDcyS6P7I6HBYN9B" "sNHM362zZnY27GpTw+Kwd751CLoXFPoaMOe57dbBpXoro6Pd3BTbf/Tzr88K06yE" "OTDKPNj3+inbMaVigtK4PLyPq+Topyzvx9USFgRvyuoxn0Hgb+R0A3j6SLRuyOdA" "i4gv7Y5oliyntgMBAQA="; // kCustomSession is a custom serialized SSL_SESSION generated by // filling in missing fields from |kOpenSSLSession|. This includes // providing |peer_sha256|, so |peer| is not serialized. static const char kCustomSession[] = "MIIBZAIBAQICAwMEAsAvBCAG5Q1ndq4Yfmbeo1zwLkNRKmCXGdNgWvGT3cskV0yQ" "kAQwJlrlzkAWBOWiLj/jJ76D7l+UXoizP2KI2C7I2FccqMmIfFmmkUy32nIJ0mZH" "IWoJoQYCBFRDO46iBAICASykAwQBAqUDAgEUqAcEBXdvcmxkqQUCAwGJwKqBpwSB" "pBwUQvoeOk0Kg36SYTcLEkXqKwOBfF9vE4KX0NxeLwjcDTpsuh3qXEaZ992r1N38" "VDcyS6P7I6HBYN9BsNHM362zZnY27GpTw+Kwd751CLoXFPoaMOe57dbBpXoro6Pd" "3BTbf/Tzr88K06yEOTDKPNj3+inbMaVigtK4PLyPq+Topyzvx9USFgRvyuoxn0Hg" "b+R0A3j6SLRuyOdAi4gv7Y5oliynrSIEIAYGBgYGBgYGBgYGBgYGBgYGBgYGBgYG" "BgYGBgYGBgYGrgMEAQevAwQBBLADBAEF"; // kBoringSSLSession is a serialized SSL_SESSION generated from bssl client. static const char kBoringSSLSession[] = "MIIRwQIBAQICAwMEAsAvBCDdoGxGK26mR+8lM0uq6+k9xYuxPnwAjpcF9n0Yli9R" "kQQwbyshfWhdi5XQ1++7n2L1qqrcVlmHBPpr6yknT/u4pUrpQB5FZ7vqvNn8MdHf" "9rWgoQYCBFXgs7uiBAICHCCjggR6MIIEdjCCA16gAwIBAgIIf+yfD7Y6UicwDQYJ" "KoZIhvcNAQELBQAwSTELMAkGA1UEBhMCVVMxEzARBgNVBAoTCkdvb2dsZSBJbmMx" "JTAjBgNVBAMTHEdvb2dsZSBJbnRlcm5ldCBBdXRob3JpdHkgRzIwHhcNMTUwODEy" "MTQ1MzE1WhcNMTUxMTEwMDAwMDAwWjBoMQswCQYDVQQGEwJVUzETMBEGA1UECAwK" "Q2FsaWZvcm5pYTEWMBQGA1UEBwwNTW91bnRhaW4gVmlldzETMBEGA1UECgwKR29v" "Z2xlIEluYzEXMBUGA1UEAwwOd3d3Lmdvb2dsZS5jb20wggEiMA0GCSqGSIb3DQEB" "AQUAA4IBDwAwggEKAoIBAQC0MeG5YGQ0t+IeJeoneP/PrhEaieibeKYkbKVLNZpo" "PLuBinvhkXZo3DC133NpCBpy6ZktBwamqyixAyuk/NU6OjgXqwwxfQ7di1AInLIU" "792c7hFyNXSUCG7At8Ifi3YwBX9Ba6u/1d6rWTGZJrdCq3QU11RkKYyTq2KT5mce" "Tv9iGKqSkSTlp8puy/9SZ/3DbU3U+BuqCFqeSlz7zjwFmk35acdCilpJlVDDN5C/" "RCh8/UKc8PaL+cxlt531qoTENvYrflBno14YEZlCBZsPiFeUSILpKEj3Ccwhy0eL" "EucWQ72YZU8mUzXBoXGn0zA0crFl5ci/2sTBBGZsylNBAgMBAAGjggFBMIIBPTAd" "BgNVHSUEFjAUBggrBgEFBQcDAQYIKwYBBQUHAwIwGQYDVR0RBBIwEIIOd3d3Lmdv" "b2dsZS5jb20waAYIKwYBBQUHAQEEXDBaMCsGCCsGAQUFBzAChh9odHRwOi8vcGtp" "Lmdvb2dsZS5jb20vR0lBRzIuY3J0MCsGCCsGAQUFBzABhh9odHRwOi8vY2xpZW50" "czEuZ29vZ2xlLmNvbS9vY3NwMB0GA1UdDgQWBBS/bzHxcE73Q4j3slC4BLbMtLjG" "GjAMBgNVHRMBAf8EAjAAMB8GA1UdIwQYMBaAFErdBhYbvPZotXb1gba7Yhq6WoEv" "MBcGA1UdIAQQMA4wDAYKKwYBBAHWeQIFATAwBgNVHR8EKTAnMCWgI6Ahhh9odHRw" "Oi8vcGtpLmdvb2dsZS5jb20vR0lBRzIuY3JsMA0GCSqGSIb3DQEBCwUAA4IBAQAb" "qdWPZEHk0X7iKPCTHL6S3w6q1eR67goxZGFSM1lk1hjwyu7XcLJuvALVV9uY3ovE" "kQZSHwT+pyOPWQhsSjO+1GyjvCvK/CAwiUmBX+bQRGaqHsRcio7xSbdVcajQ3bXd" "X+s0WdbOpn6MStKAiBVloPlSxEI8pxY6x/BBCnTIk/+DMB17uZlOjG3vbAnkDkP+" "n0OTucD9sHV7EVj9XUxi51nOfNBCN/s7lpUjDS/NJ4k3iwOtbCPswiot8vLO779a" "f07vR03r349Iz/KTzk95rlFtX0IU+KYNxFNsanIXZ+C9FYGRXkwhHcvFb4qMUB1y" "TTlM80jBMOwyjZXmjRAhpAIEAKUDAgEUqQUCAwGJwKqBpwSBpOgebbmn9NRUtMWH" "+eJpqA5JLMFSMCChOsvKey3toBaCNGU7HfAEiiXNuuAdCBoK262BjQc2YYfqFzqH" "zuppopXCvhohx7j/tnCNZIMgLYt/O9SXK2RYI5z8FhCCHvB4CbD5G0LGl5EFP27s" "Jb6S3aTTYPkQe8yZSlxevg6NDwmTogLO9F7UUkaYmVcMQhzssEE2ZRYNwSOU6KjE" "0Yj+8fAiBtbQriIEIN2L8ZlpaVrdN5KFNdvcmOxJu81P8q53X55xQyGTnGWwsgMC" "ARezggvvMIIEdjCCA16gAwIBAgIIf+yfD7Y6UicwDQYJKoZIhvcNAQELBQAwSTEL" "MAkGA1UEBhMCVVMxEzARBgNVBAoTCkdvb2dsZSBJbmMxJTAjBgNVBAMTHEdvb2ds" "ZSBJbnRlcm5ldCBBdXRob3JpdHkgRzIwHhcNMTUwODEyMTQ1MzE1WhcNMTUxMTEw" "MDAwMDAwWjBoMQswCQYDVQQGEwJVUzETMBEGA1UECAwKQ2FsaWZvcm5pYTEWMBQG" "A1UEBwwNTW91bnRhaW4gVmlldzETMBEGA1UECgwKR29vZ2xlIEluYzEXMBUGA1UE" "AwwOd3d3Lmdvb2dsZS5jb20wggEiMA0GCSqGSIb3DQEBAQUAA4IBDwAwggEKAoIB" "AQC0MeG5YGQ0t+IeJeoneP/PrhEaieibeKYkbKVLNZpoPLuBinvhkXZo3DC133Np" "CBpy6ZktBwamqyixAyuk/NU6OjgXqwwxfQ7di1AInLIU792c7hFyNXSUCG7At8If" "i3YwBX9Ba6u/1d6rWTGZJrdCq3QU11RkKYyTq2KT5mceTv9iGKqSkSTlp8puy/9S" "Z/3DbU3U+BuqCFqeSlz7zjwFmk35acdCilpJlVDDN5C/RCh8/UKc8PaL+cxlt531" "qoTENvYrflBno14YEZlCBZsPiFeUSILpKEj3Ccwhy0eLEucWQ72YZU8mUzXBoXGn" "0zA0crFl5ci/2sTBBGZsylNBAgMBAAGjggFBMIIBPTAdBgNVHSUEFjAUBggrBgEF" "BQcDAQYIKwYBBQUHAwIwGQYDVR0RBBIwEIIOd3d3Lmdvb2dsZS5jb20waAYIKwYB" "BQUHAQEEXDBaMCsGCCsGAQUFBzAChh9odHRwOi8vcGtpLmdvb2dsZS5jb20vR0lB" "RzIuY3J0MCsGCCsGAQUFBzABhh9odHRwOi8vY2xpZW50czEuZ29vZ2xlLmNvbS9v" "Y3NwMB0GA1UdDgQWBBS/bzHxcE73Q4j3slC4BLbMtLjGGjAMBgNVHRMBAf8EAjAA" "MB8GA1UdIwQYMBaAFErdBhYbvPZotXb1gba7Yhq6WoEvMBcGA1UdIAQQMA4wDAYK" "KwYBBAHWeQIFATAwBgNVHR8EKTAnMCWgI6Ahhh9odHRwOi8vcGtpLmdvb2dsZS5j" "b20vR0lBRzIuY3JsMA0GCSqGSIb3DQEBCwUAA4IBAQAbqdWPZEHk0X7iKPCTHL6S" "3w6q1eR67goxZGFSM1lk1hjwyu7XcLJuvALVV9uY3ovEkQZSHwT+pyOPWQhsSjO+" "1GyjvCvK/CAwiUmBX+bQRGaqHsRcio7xSbdVcajQ3bXdX+s0WdbOpn6MStKAiBVl" "oPlSxEI8pxY6x/BBCnTIk/+DMB17uZlOjG3vbAnkDkP+n0OTucD9sHV7EVj9XUxi" "51nOfNBCN/s7lpUjDS/NJ4k3iwOtbCPswiot8vLO779af07vR03r349Iz/KTzk95" "rlFtX0IU+KYNxFNsanIXZ+C9FYGRXkwhHcvFb4qMUB1yTTlM80jBMOwyjZXmjRAh" "MIID8DCCAtigAwIBAgIDAjqDMA0GCSqGSIb3DQEBCwUAMEIxCzAJBgNVBAYTAlVT" "MRYwFAYDVQQKEw1HZW9UcnVzdCBJbmMuMRswGQYDVQQDExJHZW9UcnVzdCBHbG9i" "YWwgQ0EwHhcNMTMwNDA1MTUxNTU2WhcNMTYxMjMxMjM1OTU5WjBJMQswCQYDVQQG" "EwJVUzETMBEGA1UEChMKR29vZ2xlIEluYzElMCMGA1UEAxMcR29vZ2xlIEludGVy" "bmV0IEF1dGhvcml0eSBHMjCCASIwDQYJKoZIhvcNAQEBBQADggEPADCCAQoCggEB" "AJwqBHdc2FCROgajguDYUEi8iT/xGXAaiEZ+4I/F8YnOIe5a/mENtzJEiaB0C1NP" "VaTOgmKV7utZX8bhBYASxF6UP7xbSDj0U/ck5vuR6RXEz/RTDfRK/J9U3n2+oGtv" "h8DQUB8oMANA2ghzUWx//zo8pzcGjr1LEQTrfSTe5vn8MXH7lNVg8y5Kr0LSy+rE" "ahqyzFPdFUuLH8gZYR/Nnag+YyuENWllhMgZxUYi+FOVvuOAShDGKuy6lyARxzmZ" "EASg8GF6lSWMTlJ14rbtCMoU/M4iarNOz0YDl5cDfsCx3nuvRTPPuj5xt970JSXC" "DTWJnZ37DhF5iR43xa+OcmkCAwEAAaOB5zCB5DAfBgNVHSMEGDAWgBTAephojYn7" "qwVkDBF9qn1luMrMTjAdBgNVHQ4EFgQUSt0GFhu89mi1dvWBtrtiGrpagS8wDgYD" "VR0PAQH/BAQDAgEGMC4GCCsGAQUFBwEBBCIwIDAeBggrBgEFBQcwAYYSaHR0cDov" "L2cuc3ltY2QuY29tMBIGA1UdEwEB/wQIMAYBAf8CAQAwNQYDVR0fBC4wLDAqoCig" "JoYkaHR0cDovL2cuc3ltY2IuY29tL2NybHMvZ3RnbG9iYWwuY3JsMBcGA1UdIAQQ" "MA4wDAYKKwYBBAHWeQIFATANBgkqhkiG9w0BAQsFAAOCAQEAqvqpIM1qZ4PtXtR+" "3h3Ef+AlBgDFJPupyC1tft6dgmUsgWM0Zj7pUsIItMsv91+ZOmqcUHqFBYx90SpI" "hNMJbHzCzTWf84LuUt5oX+QAihcglvcpjZpNy6jehsgNb1aHA30DP9z6eX0hGfnI" "Oi9RdozHQZJxjyXON/hKTAAj78Q1EK7gI4BzfE00LshukNYQHpmEcxpw8u1VDu4X" "Bupn7jLrLN1nBz/2i8Jw3lsA5rsb0zYaImxssDVCbJAJPZPpZAkiDoUGn8JzIdPm" "X4DkjYUiOnMDsWCOrmji9D6X52ASCWg23jrW4kOVWzeBkoEfu43XrVJkFleW2V40" "fsg12DCCA30wggLmoAMCAQICAxK75jANBgkqhkiG9w0BAQUFADBOMQswCQYDVQQG" "EwJVUzEQMA4GA1UEChMHRXF1aWZheDEtMCsGA1UECxMkRXF1aWZheCBTZWN1cmUg" "Q2VydGlmaWNhdGUgQXV0aG9yaXR5MB4XDTAyMDUyMTA0MDAwMFoXDTE4MDgyMTA0" "MDAwMFowQjELMAkGA1UEBhMCVVMxFjAUBgNVBAoTDUdlb1RydXN0IEluYy4xGzAZ" "BgNVBAMTEkdlb1RydXN0IEdsb2JhbCBDQTCCASIwDQYJKoZIhvcNAQEBBQADggEP" "ADCCAQoCggEBANrMGGMw/fQXIxpWflvfPGw45HG3eJHUvKHYTPioQ7YD6U0hBwiI" "2lgvZjkpvQV4i5046AW3an5xpObEYKaw74DkiSgPniXW7YPzraaRx5jJQhg1FJ2t" "mEaSLk/K8YdDwRaVVy1Q74ktgHpXrfLuX2vSAI25FPgUFTXZwEaje3LIkb/JVSvN" "0Jc+nCZkzN/Ogxlxyk7m1NV7qRnNVd7I7NJeOFPlXE+MLf5QIzb8ZubLjqQ5GQC3" "lQI5kQsO/jgu0R0FmvZNPm8PBx2vLB6PYDni+jZTEznUXiYr2z2oFL0y6xgDKFIE" "ceWrMz3hOLsHNoRinHnqFjD0X8Ar6HFr5PkCAwEAAaOB8DCB7TAfBgNVHSMEGDAW" "gBRI5mj5K9KylddH2CMgEE8zmJCf1DAdBgNVHQ4EFgQUwHqYaI2J+6sFZAwRfap9" "ZbjKzE4wDwYDVR0TAQH/BAUwAwEB/zAOBgNVHQ8BAf8EBAMCAQYwOgYDVR0fBDMw" "MTAvoC2gK4YpaHR0cDovL2NybC5nZW90cnVzdC5jb20vY3Jscy9zZWN1cmVjYS5j" "cmwwTgYDVR0gBEcwRTBDBgRVHSAAMDswOQYIKwYBBQUHAgEWLWh0dHBzOi8vd3d3" "Lmdlb3RydXN0LmNvbS9yZXNvdXJjZXMvcmVwb3NpdG9yeTANBgkqhkiG9w0BAQUF" "AAOBgQB24RJuTksWEoYwBrKBCM/wCMfHcX5m7sLt1Dsf//DwyE7WQziwuTB9GNBV" "g6JqyzYRnOhIZqNtf7gT1Ef+i1pcc/yu2RsyGTirlzQUqpbS66McFAhJtrvlke+D" "NusdVm/K2rxzY5Dkf3s+Iss9B+1fOHSc4wNQTqGvmO5h8oQ/Eg=="; // kBadSessionExtraField is a custom serialized SSL_SESSION generated by replacing // the final (optional) element of |kCustomSession| with tag number 30. static const char kBadSessionExtraField[] = "MIIBdgIBAQICAwMEAsAvBCAG5Q1ndq4Yfmbeo1zwLkNRKmCXGdNgWvGT3cskV0yQ" "kAQwJlrlzkAWBOWiLj/jJ76D7l+UXoizP2KI2C7I2FccqMmIfFmmkUy32nIJ0mZH" "IWoJoQYCBFRDO46iBAICASykAwQBAqUDAgEUphAEDnd3dy5nb29nbGUuY29tqAcE" "BXdvcmxkqQUCAwGJwKqBpwSBpBwUQvoeOk0Kg36SYTcLEkXqKwOBfF9vE4KX0Nxe" "LwjcDTpsuh3qXEaZ992r1N38VDcyS6P7I6HBYN9BsNHM362zZnY27GpTw+Kwd751" "CLoXFPoaMOe57dbBpXoro6Pd3BTbf/Tzr88K06yEOTDKPNj3+inbMaVigtK4PLyP" "q+Topyzvx9USFgRvyuoxn0Hgb+R0A3j6SLRuyOdAi4gv7Y5oliynrSIEIAYGBgYG" "BgYGBgYGBgYGBgYGBgYGBgYGBgYGBgYGBgYGrgMEAQevAwQBBL4DBAEF"; // kBadSessionVersion is a custom serialized SSL_SESSION generated by replacing // the version of |kCustomSession| with 2. static const char kBadSessionVersion[] = "MIIBdgIBAgICAwMEAsAvBCAG5Q1ndq4Yfmbeo1zwLkNRKmCXGdNgWvGT3cskV0yQ" "kAQwJlrlzkAWBOWiLj/jJ76D7l+UXoizP2KI2C7I2FccqMmIfFmmkUy32nIJ0mZH" "IWoJoQYCBFRDO46iBAICASykAwQBAqUDAgEUphAEDnd3dy5nb29nbGUuY29tqAcE" "BXdvcmxkqQUCAwGJwKqBpwSBpBwUQvoeOk0Kg36SYTcLEkXqKwOBfF9vE4KX0Nxe" "LwjcDTpsuh3qXEaZ992r1N38VDcyS6P7I6HBYN9BsNHM362zZnY27GpTw+Kwd751" "CLoXFPoaMOe57dbBpXoro6Pd3BTbf/Tzr88K06yEOTDKPNj3+inbMaVigtK4PLyP" "q+Topyzvx9USFgRvyuoxn0Hgb+R0A3j6SLRuyOdAi4gv7Y5oliynrSIEIAYGBgYG" "BgYGBgYGBgYGBgYGBgYGBgYGBgYGBgYGBgYGrgMEAQevAwQBBLADBAEF"; // kBadSessionTrailingData is a custom serialized SSL_SESSION with trailing data // appended. static const char kBadSessionTrailingData[] = "MIIBdgIBAQICAwMEAsAvBCAG5Q1ndq4Yfmbeo1zwLkNRKmCXGdNgWvGT3cskV0yQ" "kAQwJlrlzkAWBOWiLj/jJ76D7l+UXoizP2KI2C7I2FccqMmIfFmmkUy32nIJ0mZH" "IWoJoQYCBFRDO46iBAICASykAwQBAqUDAgEUphAEDnd3dy5nb29nbGUuY29tqAcE" "BXdvcmxkqQUCAwGJwKqBpwSBpBwUQvoeOk0Kg36SYTcLEkXqKwOBfF9vE4KX0Nxe" "LwjcDTpsuh3qXEaZ992r1N38VDcyS6P7I6HBYN9BsNHM362zZnY27GpTw+Kwd751" "CLoXFPoaMOe57dbBpXoro6Pd3BTbf/Tzr88K06yEOTDKPNj3+inbMaVigtK4PLyP" "q+Topyzvx9USFgRvyuoxn0Hgb+R0A3j6SLRuyOdAi4gv7Y5oliynrSIEIAYGBgYG" "BgYGBgYGBgYGBgYGBgYGBgYGBgYGBgYGBgYGrgMEAQevAwQBBLADBAEFAAAA"; static bool DecodeBase64(std::vector *out, const char *in) { size_t len; if (!EVP_DecodedLength(&len, strlen(in))) { fprintf(stderr, "EVP_DecodedLength failed\n"); return false; } out->resize(len); if (!EVP_DecodeBase64(out->data(), &len, len, (const uint8_t *)in, strlen(in))) { fprintf(stderr, "EVP_DecodeBase64 failed\n"); return false; } out->resize(len); return true; } TEST(SSLTest, SessionEncoding) { for (const char *input_b64 : { kOpenSSLSession, kCustomSession, kBoringSSLSession, }) { SCOPED_TRACE(std::string(input_b64)); // Decode the input. std::vector input; ASSERT_TRUE(DecodeBase64(&input, input_b64)); // Verify the SSL_SESSION decodes. bssl::UniquePtr ssl_ctx(SSL_CTX_new(TLS_method())); ASSERT_TRUE(ssl_ctx); bssl::UniquePtr session( SSL_SESSION_from_bytes(input.data(), input.size(), ssl_ctx.get())); ASSERT_TRUE(session) << "SSL_SESSION_from_bytes failed"; // Verify the SSL_SESSION encoding round-trips. size_t encoded_len; bssl::UniquePtr encoded; uint8_t *encoded_raw; ASSERT_TRUE(SSL_SESSION_to_bytes(session.get(), &encoded_raw, &encoded_len)) << "SSL_SESSION_to_bytes failed"; encoded.reset(encoded_raw); EXPECT_EQ(Bytes(encoded.get(), encoded_len), Bytes(input)) << "SSL_SESSION_to_bytes did not round-trip"; // Verify the SSL_SESSION also decodes with the legacy API. const uint8_t *cptr = input.data(); session.reset(d2i_SSL_SESSION(NULL, &cptr, input.size())); ASSERT_TRUE(session) << "d2i_SSL_SESSION failed"; EXPECT_EQ(cptr, input.data() + input.size()); // Verify the SSL_SESSION encoding round-trips via the legacy API. int len = i2d_SSL_SESSION(session.get(), NULL); ASSERT_GT(len, 0) << "i2d_SSL_SESSION failed"; ASSERT_EQ(static_cast(len), input.size()) << "i2d_SSL_SESSION(NULL) returned invalid length"; encoded.reset((uint8_t *)OPENSSL_malloc(input.size())); ASSERT_TRUE(encoded); uint8_t *ptr = encoded.get(); len = i2d_SSL_SESSION(session.get(), &ptr); ASSERT_GT(len, 0) << "i2d_SSL_SESSION failed"; ASSERT_EQ(static_cast(len), input.size()) << "i2d_SSL_SESSION(NULL) returned invalid length"; ASSERT_EQ(ptr, encoded.get() + input.size()) << "i2d_SSL_SESSION did not advance ptr correctly"; EXPECT_EQ(Bytes(encoded.get(), encoded_len), Bytes(input)) << "SSL_SESSION_to_bytes did not round-trip"; } for (const char *input_b64 : { kBadSessionExtraField, kBadSessionVersion, kBadSessionTrailingData, }) { SCOPED_TRACE(std::string(input_b64)); std::vector input; ASSERT_TRUE(DecodeBase64(&input, input_b64)); // Verify that the SSL_SESSION fails to decode. bssl::UniquePtr ssl_ctx(SSL_CTX_new(TLS_method())); ASSERT_TRUE(ssl_ctx); bssl::UniquePtr session( SSL_SESSION_from_bytes(input.data(), input.size(), ssl_ctx.get())); EXPECT_FALSE(session) << "SSL_SESSION_from_bytes unexpectedly succeeded"; ERR_clear_error(); } } static void ExpectDefaultVersion(uint16_t min_version, uint16_t max_version, const SSL_METHOD *(*method)(void)) { bssl::UniquePtr ctx(SSL_CTX_new(method())); ASSERT_TRUE(ctx); EXPECT_EQ(min_version, SSL_CTX_get_min_proto_version(ctx.get())); EXPECT_EQ(max_version, SSL_CTX_get_max_proto_version(ctx.get())); } TEST(SSLTest, DefaultVersion) { // TODO(svaldez): Update this when TLS 1.3 is enabled by default. ExpectDefaultVersion(TLS1_VERSION, TLS1_2_VERSION, &TLS_method); ExpectDefaultVersion(TLS1_VERSION, TLS1_VERSION, &TLSv1_method); ExpectDefaultVersion(TLS1_1_VERSION, TLS1_1_VERSION, &TLSv1_1_method); ExpectDefaultVersion(TLS1_2_VERSION, TLS1_2_VERSION, &TLSv1_2_method); ExpectDefaultVersion(DTLS1_VERSION, DTLS1_2_VERSION, &DTLS_method); ExpectDefaultVersion(DTLS1_VERSION, DTLS1_VERSION, &DTLSv1_method); ExpectDefaultVersion(DTLS1_2_VERSION, DTLS1_2_VERSION, &DTLSv1_2_method); } TEST(SSLTest, CipherProperties) { static const struct { int id; const char *standard_name; int cipher_nid; int digest_nid; int kx_nid; int auth_nid; int prf_nid; } kTests[] = { { SSL3_CK_RSA_DES_192_CBC3_SHA, "TLS_RSA_WITH_3DES_EDE_CBC_SHA", NID_des_ede3_cbc, NID_sha1, NID_kx_rsa, NID_auth_rsa, NID_md5_sha1, }, { TLS1_CK_RSA_WITH_AES_128_SHA, "TLS_RSA_WITH_AES_128_CBC_SHA", NID_aes_128_cbc, NID_sha1, NID_kx_rsa, NID_auth_rsa, NID_md5_sha1, }, { TLS1_CK_PSK_WITH_AES_256_CBC_SHA, "TLS_PSK_WITH_AES_256_CBC_SHA", NID_aes_256_cbc, NID_sha1, NID_kx_psk, NID_auth_psk, NID_md5_sha1, }, { TLS1_CK_ECDHE_RSA_WITH_AES_128_CBC_SHA, "TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA", NID_aes_128_cbc, NID_sha1, NID_kx_ecdhe, NID_auth_rsa, NID_md5_sha1, }, { TLS1_CK_ECDHE_RSA_WITH_AES_256_CBC_SHA, "TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA", NID_aes_256_cbc, NID_sha1, NID_kx_ecdhe, NID_auth_rsa, NID_md5_sha1, }, { TLS1_CK_ECDHE_RSA_WITH_AES_128_GCM_SHA256, "TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256", NID_aes_128_gcm, NID_undef, NID_kx_ecdhe, NID_auth_rsa, NID_sha256, }, { TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, "TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256", NID_aes_128_gcm, NID_undef, NID_kx_ecdhe, NID_auth_ecdsa, NID_sha256, }, { TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384, "TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384", NID_aes_256_gcm, NID_undef, NID_kx_ecdhe, NID_auth_ecdsa, NID_sha384, }, { TLS1_CK_ECDHE_PSK_WITH_AES_128_CBC_SHA, "TLS_ECDHE_PSK_WITH_AES_128_CBC_SHA", NID_aes_128_cbc, NID_sha1, NID_kx_ecdhe, NID_auth_psk, NID_md5_sha1, }, { TLS1_CK_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256, "TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256", NID_chacha20_poly1305, NID_undef, NID_kx_ecdhe, NID_auth_rsa, NID_sha256, }, { TLS1_CK_AES_256_GCM_SHA384, "TLS_AES_256_GCM_SHA384", NID_aes_256_gcm, NID_undef, NID_kx_any, NID_auth_any, NID_sha384, }, { TLS1_CK_AES_128_GCM_SHA256, "TLS_AES_128_GCM_SHA256", NID_aes_128_gcm, NID_undef, NID_kx_any, NID_auth_any, NID_sha256, }, { TLS1_CK_CHACHA20_POLY1305_SHA256, "TLS_CHACHA20_POLY1305_SHA256", NID_chacha20_poly1305, NID_undef, NID_kx_any, NID_auth_any, NID_sha256, }, }; for (const auto &t : kTests) { SCOPED_TRACE(t.standard_name); const SSL_CIPHER *cipher = SSL_get_cipher_by_value(t.id & 0xffff); ASSERT_TRUE(cipher); EXPECT_STREQ(t.standard_name, SSL_CIPHER_standard_name(cipher)); bssl::UniquePtr rfc_name(SSL_CIPHER_get_rfc_name(cipher)); ASSERT_TRUE(rfc_name); EXPECT_STREQ(t.standard_name, rfc_name.get()); EXPECT_EQ(t.cipher_nid, SSL_CIPHER_get_cipher_nid(cipher)); EXPECT_EQ(t.digest_nid, SSL_CIPHER_get_digest_nid(cipher)); EXPECT_EQ(t.kx_nid, SSL_CIPHER_get_kx_nid(cipher)); EXPECT_EQ(t.auth_nid, SSL_CIPHER_get_auth_nid(cipher)); EXPECT_EQ(t.prf_nid, SSL_CIPHER_get_prf_nid(cipher)); } } // CreateSessionWithTicket returns a sample |SSL_SESSION| with the specified // version and ticket length or nullptr on failure. static bssl::UniquePtr CreateSessionWithTicket(uint16_t version, size_t ticket_len) { std::vector der; if (!DecodeBase64(&der, kOpenSSLSession)) { return nullptr; } bssl::UniquePtr ssl_ctx(SSL_CTX_new(TLS_method())); if (!ssl_ctx) { return nullptr; } // Use a garbage ticket. std::vector ticket(ticket_len, 'a'); bssl::UniquePtr session( SSL_SESSION_from_bytes(der.data(), der.size(), ssl_ctx.get())); if (!session || !SSL_SESSION_set_protocol_version(session.get(), version) || !SSL_SESSION_set_ticket(session.get(), ticket.data(), ticket.size())) { return nullptr; } // Fix up the timeout. #if defined(BORINGSSL_UNSAFE_DETERMINISTIC_MODE) SSL_SESSION_set_time(session.get(), 1234); #else SSL_SESSION_set_time(session.get(), time(nullptr)); #endif return session; } static bool GetClientHello(SSL *ssl, std::vector *out) { bssl::UniquePtr bio(BIO_new(BIO_s_mem())); if (!bio) { return false; } // Do not configure a reading BIO, but record what's written to a memory BIO. BIO_up_ref(bio.get()); SSL_set_bio(ssl, nullptr /* rbio */, bio.get()); int ret = SSL_connect(ssl); if (ret > 0) { // SSL_connect should fail without a BIO to write to. return false; } ERR_clear_error(); const uint8_t *client_hello; size_t client_hello_len; if (!BIO_mem_contents(bio.get(), &client_hello, &client_hello_len)) { return false; } *out = std::vector(client_hello, client_hello + client_hello_len); return true; } // GetClientHelloLen creates a client SSL connection with the specified version // and ticket length. It returns the length of the ClientHello, not including // the record header, on success and zero on error. static size_t GetClientHelloLen(uint16_t max_version, uint16_t session_version, size_t ticket_len) { bssl::UniquePtr ctx(SSL_CTX_new(TLS_method())); bssl::UniquePtr session = CreateSessionWithTicket(session_version, ticket_len); if (!ctx || !session) { return 0; } // Set a one-element cipher list so the baseline ClientHello is unpadded. bssl::UniquePtr ssl(SSL_new(ctx.get())); if (!ssl || !SSL_set_session(ssl.get(), session.get()) || !SSL_set_strict_cipher_list(ssl.get(), "ECDHE-RSA-AES128-GCM-SHA256") || !SSL_set_max_proto_version(ssl.get(), max_version)) { return 0; } std::vector client_hello; if (!GetClientHello(ssl.get(), &client_hello) || client_hello.size() <= SSL3_RT_HEADER_LENGTH) { return 0; } return client_hello.size() - SSL3_RT_HEADER_LENGTH; } TEST(SSLTest, Padding) { struct PaddingVersions { uint16_t max_version, session_version; }; static const PaddingVersions kPaddingVersions[] = { // Test the padding extension at TLS 1.2. {TLS1_2_VERSION, TLS1_2_VERSION}, // Test the padding extension at TLS 1.3 with a TLS 1.2 session, so there // will be no PSK binder after the padding extension. {TLS1_3_VERSION, TLS1_2_VERSION}, // Test the padding extension at TLS 1.3 with a TLS 1.3 session, so there // will be a PSK binder after the padding extension. {TLS1_3_VERSION, TLS1_3_VERSION}, }; struct PaddingTest { size_t input_len, padded_len; }; static const PaddingTest kPaddingTests[] = { // ClientHellos of length below 0x100 do not require padding. {0xfe, 0xfe}, {0xff, 0xff}, // ClientHellos of length 0x100 through 0x1fb are padded up to 0x200. {0x100, 0x200}, {0x123, 0x200}, {0x1fb, 0x200}, // ClientHellos of length 0x1fc through 0x1ff get padded beyond 0x200. The // padding extension takes a minimum of four bytes plus one required // content // byte. (To work around yet more server bugs, we avoid empty final // extensions.) {0x1fc, 0x201}, {0x1fd, 0x202}, {0x1fe, 0x203}, {0x1ff, 0x204}, // Finally, larger ClientHellos need no padding. {0x200, 0x200}, {0x201, 0x201}, }; for (const PaddingVersions &versions : kPaddingVersions) { SCOPED_TRACE(versions.max_version); SCOPED_TRACE(versions.session_version); // Sample a baseline length. size_t base_len = GetClientHelloLen(versions.max_version, versions.session_version, 1); ASSERT_NE(base_len, 0u) << "Baseline length could not be sampled"; for (const PaddingTest &test : kPaddingTests) { SCOPED_TRACE(test.input_len); ASSERT_LE(base_len, test.input_len) << "Baseline ClientHello too long"; size_t padded_len = GetClientHelloLen(versions.max_version, versions.session_version, 1 + test.input_len - base_len); EXPECT_EQ(padded_len, test.padded_len) << "ClientHello was not padded to expected length"; } } } static bssl::UniquePtr GetTestCertificate() { static const char kCertPEM[] = "-----BEGIN CERTIFICATE-----\n" "MIICWDCCAcGgAwIBAgIJAPuwTC6rEJsMMA0GCSqGSIb3DQEBBQUAMEUxCzAJBgNV\n" "BAYTAkFVMRMwEQYDVQQIDApTb21lLVN0YXRlMSEwHwYDVQQKDBhJbnRlcm5ldCBX\n" "aWRnaXRzIFB0eSBMdGQwHhcNMTQwNDIzMjA1MDQwWhcNMTcwNDIyMjA1MDQwWjBF\n" "MQswCQYDVQQGEwJBVTETMBEGA1UECAwKU29tZS1TdGF0ZTEhMB8GA1UECgwYSW50\n" "ZXJuZXQgV2lkZ2l0cyBQdHkgTHRkMIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKB\n" "gQDYK8imMuRi/03z0K1Zi0WnvfFHvwlYeyK9Na6XJYaUoIDAtB92kWdGMdAQhLci\n" "HnAjkXLI6W15OoV3gA/ElRZ1xUpxTMhjP6PyY5wqT5r6y8FxbiiFKKAnHmUcrgfV\n" "W28tQ+0rkLGMryRtrukXOgXBv7gcrmU7G1jC2a7WqmeI8QIDAQABo1AwTjAdBgNV\n" "HQ4EFgQUi3XVrMsIvg4fZbf6Vr5sp3Xaha8wHwYDVR0jBBgwFoAUi3XVrMsIvg4f\n" "Zbf6Vr5sp3Xaha8wDAYDVR0TBAUwAwEB/zANBgkqhkiG9w0BAQUFAAOBgQA76Hht\n" "ldY9avcTGSwbwoiuIqv0jTL1fHFnzy3RHMLDh+Lpvolc5DSrSJHCP5WuK0eeJXhr\n" "T5oQpHL9z/cCDLAKCKRa4uV0fhEdOWBqyR9p8y5jJtye72t6CuFUV5iqcpF4BH4f\n" "j2VNHwsSrJwkD4QUGlUtH7vwnQmyCFxZMmWAJg==\n" "-----END CERTIFICATE-----\n"; bssl::UniquePtr bio(BIO_new_mem_buf(kCertPEM, strlen(kCertPEM))); return bssl::UniquePtr( PEM_read_bio_X509(bio.get(), nullptr, nullptr, nullptr)); } static bssl::UniquePtr GetTestKey() { static const char kKeyPEM[] = "-----BEGIN RSA PRIVATE KEY-----\n" "MIICXgIBAAKBgQDYK8imMuRi/03z0K1Zi0WnvfFHvwlYeyK9Na6XJYaUoIDAtB92\n" "kWdGMdAQhLciHnAjkXLI6W15OoV3gA/ElRZ1xUpxTMhjP6PyY5wqT5r6y8FxbiiF\n" "KKAnHmUcrgfVW28tQ+0rkLGMryRtrukXOgXBv7gcrmU7G1jC2a7WqmeI8QIDAQAB\n" "AoGBAIBy09Fd4DOq/Ijp8HeKuCMKTHqTW1xGHshLQ6jwVV2vWZIn9aIgmDsvkjCe\n" "i6ssZvnbjVcwzSoByhjN8ZCf/i15HECWDFFh6gt0P5z0MnChwzZmvatV/FXCT0j+\n" "WmGNB/gkehKjGXLLcjTb6dRYVJSCZhVuOLLcbWIV10gggJQBAkEA8S8sGe4ezyyZ\n" "m4e9r95g6s43kPqtj5rewTsUxt+2n4eVodD+ZUlCULWVNAFLkYRTBCASlSrm9Xhj\n" "QpmWAHJUkQJBAOVzQdFUaewLtdOJoPCtpYoY1zd22eae8TQEmpGOR11L6kbxLQsk\n" "aMly/DOnOaa82tqAGTdqDEZgSNmCeKKknmECQAvpnY8GUOVAubGR6c+W90iBuQLj\n" "LtFp/9ihd2w/PoDwrHZaoUYVcT4VSfJQog/k7kjE4MYXYWL8eEKg3WTWQNECQQDk\n" "104Wi91Umd1PzF0ijd2jXOERJU1wEKe6XLkYYNHWQAe5l4J4MWj9OdxFXAxIuuR/\n" "tfDwbqkta4xcux67//khAkEAvvRXLHTaa6VFzTaiiO8SaFsHV3lQyXOtMrBpB5jd\n" "moZWgjHvB2W9Ckn7sDqsPB+U2tyX0joDdQEyuiMECDY8oQ==\n" "-----END RSA PRIVATE KEY-----\n"; bssl::UniquePtr bio(BIO_new_mem_buf(kKeyPEM, strlen(kKeyPEM))); return bssl::UniquePtr( PEM_read_bio_PrivateKey(bio.get(), nullptr, nullptr, nullptr)); } static bssl::UniquePtr GetECDSATestCertificate() { static const char kCertPEM[] = "-----BEGIN CERTIFICATE-----\n" "MIIBzzCCAXagAwIBAgIJANlMBNpJfb/rMAkGByqGSM49BAEwRTELMAkGA1UEBhMC\n" "QVUxEzARBgNVBAgMClNvbWUtU3RhdGUxITAfBgNVBAoMGEludGVybmV0IFdpZGdp\n" "dHMgUHR5IEx0ZDAeFw0xNDA0MjMyMzIxNTdaFw0xNDA1MjMyMzIxNTdaMEUxCzAJ\n" "BgNVBAYTAkFVMRMwEQYDVQQIDApTb21lLVN0YXRlMSEwHwYDVQQKDBhJbnRlcm5l\n" "dCBXaWRnaXRzIFB0eSBMdGQwWTATBgcqhkjOPQIBBggqhkjOPQMBBwNCAATmK2ni\n" "v2Wfl74vHg2UikzVl2u3qR4NRvvdqakendy6WgHn1peoChj5w8SjHlbifINI2xYa\n" "HPUdfvGULUvPciLBo1AwTjAdBgNVHQ4EFgQUq4TSrKuV8IJOFngHVVdf5CaNgtEw\n" "HwYDVR0jBBgwFoAUq4TSrKuV8IJOFngHVVdf5CaNgtEwDAYDVR0TBAUwAwEB/zAJ\n" "BgcqhkjOPQQBA0gAMEUCIQDyoDVeUTo2w4J5m+4nUIWOcAZ0lVfSKXQA9L4Vh13E\n" "BwIgfB55FGohg/B6dGh5XxSZmmi08cueFV7mHzJSYV51yRQ=\n" "-----END CERTIFICATE-----\n"; bssl::UniquePtr bio(BIO_new_mem_buf(kCertPEM, strlen(kCertPEM))); return bssl::UniquePtr(PEM_read_bio_X509(bio.get(), nullptr, nullptr, nullptr)); } static bssl::UniquePtr GetECDSATestKey() { static const char kKeyPEM[] = "-----BEGIN PRIVATE KEY-----\n" "MIGHAgEAMBMGByqGSM49AgEGCCqGSM49AwEHBG0wawIBAQQgBw8IcnrUoEqc3VnJ\n" "TYlodwi1b8ldMHcO6NHJzgqLtGqhRANCAATmK2niv2Wfl74vHg2UikzVl2u3qR4N\n" "Rvvdqakendy6WgHn1peoChj5w8SjHlbifINI2xYaHPUdfvGULUvPciLB\n" "-----END PRIVATE KEY-----\n"; bssl::UniquePtr bio(BIO_new_mem_buf(kKeyPEM, strlen(kKeyPEM))); return bssl::UniquePtr( PEM_read_bio_PrivateKey(bio.get(), nullptr, nullptr, nullptr)); } static bssl::UniquePtr BufferFromPEM(const char *pem) { bssl::UniquePtr bio(BIO_new_mem_buf(pem, strlen(pem))); char *name, *header; uint8_t *data; long data_len; if (!PEM_read_bio(bio.get(), &name, &header, &data, &data_len)) { return nullptr; } OPENSSL_free(name); OPENSSL_free(header); auto ret = bssl::UniquePtr( CRYPTO_BUFFER_new(data, data_len, nullptr)); OPENSSL_free(data); return ret; } static bssl::UniquePtr GetChainTestCertificateBuffer() { static const char kCertPEM[] = "-----BEGIN CERTIFICATE-----\n" "MIIC0jCCAbqgAwIBAgICEAAwDQYJKoZIhvcNAQELBQAwDzENMAsGA1UEAwwEQiBD\n" "QTAeFw0xNjAyMjgyMDI3MDNaFw0yNjAyMjUyMDI3MDNaMBgxFjAUBgNVBAMMDUNs\n" "aWVudCBDZXJ0IEEwggEiMA0GCSqGSIb3DQEBAQUAA4IBDwAwggEKAoIBAQDRvaz8\n" "CC/cshpCafJo4jLkHEoBqDLhdgFelJoAiQUyIqyWl2O7YHPnpJH+TgR7oelzNzt/\n" "kLRcH89M/TszB6zqyLTC4aqmvzKL0peD/jL2LWBucR0WXIvjA3zoRuF/x86+rYH3\n" "tHb+xs2PSs8EGL/Ev+ss+qTzTGEn26fuGNHkNw6tOwPpc+o8+wUtzf/kAthamo+c\n" "IDs2rQ+lP7+aLZTLeU/q4gcLutlzcK5imex5xy2jPkweq48kijK0kIzl1cPlA5d1\n" "z7C8jU50Pj9X9sQDJTN32j7UYRisJeeYQF8GaaN8SbrDI6zHgKzrRLyxDt/KQa9V\n" "iLeXANgZi+Xx9KgfAgMBAAGjLzAtMAwGA1UdEwEB/wQCMAAwHQYDVR0lBBYwFAYI\n" "KwYBBQUHAwEGCCsGAQUFBwMCMA0GCSqGSIb3DQEBCwUAA4IBAQBFEVbmYl+2RtNw\n" "rDftRDF1v2QUbcN2ouSnQDHxeDQdSgasLzT3ui8iYu0Rw2WWcZ0DV5e0ztGPhWq7\n" "AO0B120aFRMOY+4+bzu9Q2FFkQqc7/fKTvTDzIJI5wrMnFvUfzzvxh3OHWMYSs/w\n" "giq33hTKeHEq6Jyk3btCny0Ycecyc3yGXH10sizUfiHlhviCkDuESk8mFDwDDzqW\n" "ZF0IipzFbEDHoIxLlm3GQxpiLoEV4k8KYJp3R5KBLFyxM6UGPz8h72mIPCJp2RuK\n" "MYgF91UDvVzvnYm6TfseM2+ewKirC00GOrZ7rEcFvtxnKSqYf4ckqfNdSU1Y+RRC\n" "1ngWZ7Ih\n" "-----END CERTIFICATE-----\n"; return BufferFromPEM(kCertPEM); } static bssl::UniquePtr X509FromBuffer( bssl::UniquePtr buffer) { if (!buffer) { return nullptr; } const uint8_t *derp = CRYPTO_BUFFER_data(buffer.get()); return bssl::UniquePtr( d2i_X509(NULL, &derp, CRYPTO_BUFFER_len(buffer.get()))); } static bssl::UniquePtr GetChainTestCertificate() { return X509FromBuffer(GetChainTestCertificateBuffer()); } static bssl::UniquePtr GetChainTestIntermediateBuffer() { static const char kCertPEM[] = "-----BEGIN CERTIFICATE-----\n" "MIICwjCCAaqgAwIBAgICEAEwDQYJKoZIhvcNAQELBQAwFDESMBAGA1UEAwwJQyBS\n" "b290IENBMB4XDTE2MDIyODIwMjcwM1oXDTI2MDIyNTIwMjcwM1owDzENMAsGA1UE\n" "AwwEQiBDQTCCASIwDQYJKoZIhvcNAQEBBQADggEPADCCAQoCggEBALsSCYmDip2D\n" "GkjFxw7ykz26JSjELkl6ArlYjFJ3aT/SCh8qbS4gln7RH8CPBd78oFdfhIKQrwtZ\n" "3/q21ykD9BAS3qHe2YdcJfm8/kWAy5DvXk6NXU4qX334KofBAEpgdA/igEFq1P1l\n" "HAuIfZCpMRfT+i5WohVsGi8f/NgpRvVaMONLNfgw57mz1lbtFeBEISmX0kbsuJxF\n" "Qj/Bwhi5/0HAEXG8e7zN4cEx0yPRvmOATRdVb/8dW2pwOHRJq9R5M0NUkIsTSnL7\n" "6N/z8hRAHMsV3IudC5Yd7GXW1AGu9a+iKU+Q4xcZCoj0DC99tL4VKujrV1kAeqsM\n" "cz5/dKzi6+cCAwEAAaMjMCEwDwYDVR0TAQH/BAUwAwEB/zAOBgNVHQ8BAf8EBAMC\n" "AQYwDQYJKoZIhvcNAQELBQADggEBAIIeZiEeNhWWQ8Y4D+AGDwqUUeG8NjCbKrXQ\n" "BlHg5wZ8xftFaiP1Dp/UAezmx2LNazdmuwrYB8lm3FVTyaPDTKEGIPS4wJKHgqH1\n" "QPDhqNm85ey7TEtI9oYjsNim/Rb+iGkIAMXaxt58SzxbjvP0kMr1JfJIZbic9vye\n" "NwIspMFIpP3FB8ywyu0T0hWtCQgL4J47nigCHpOu58deP88fS/Nyz/fyGVWOZ76b\n" "WhWwgM3P3X95fQ3d7oFPR/bVh0YV+Cf861INwplokXgXQ3/TCQ+HNXeAMWn3JLWv\n" "XFwk8owk9dq/kQGdndGgy3KTEW4ctPX5GNhf3LJ9Q7dLji4ReQ4=\n" "-----END CERTIFICATE-----\n"; return BufferFromPEM(kCertPEM); } static bssl::UniquePtr GetChainTestIntermediate() { return X509FromBuffer(GetChainTestIntermediateBuffer()); } static bssl::UniquePtr GetChainTestKey() { static const char kKeyPEM[] = "-----BEGIN PRIVATE KEY-----\n" "MIIEvgIBADANBgkqhkiG9w0BAQEFAASCBKgwggSkAgEAAoIBAQDRvaz8CC/cshpC\n" "afJo4jLkHEoBqDLhdgFelJoAiQUyIqyWl2O7YHPnpJH+TgR7oelzNzt/kLRcH89M\n" "/TszB6zqyLTC4aqmvzKL0peD/jL2LWBucR0WXIvjA3zoRuF/x86+rYH3tHb+xs2P\n" "Ss8EGL/Ev+ss+qTzTGEn26fuGNHkNw6tOwPpc+o8+wUtzf/kAthamo+cIDs2rQ+l\n" "P7+aLZTLeU/q4gcLutlzcK5imex5xy2jPkweq48kijK0kIzl1cPlA5d1z7C8jU50\n" "Pj9X9sQDJTN32j7UYRisJeeYQF8GaaN8SbrDI6zHgKzrRLyxDt/KQa9ViLeXANgZ\n" "i+Xx9KgfAgMBAAECggEBAK0VjSJzkyPaamcyTVSWjo7GdaBGcK60lk657RjR+lK0\n" "YJ7pkej4oM2hdsVZFsP8Cs4E33nXLa/0pDsRov/qrp0WQm2skwqGMC1I/bZ0WRPk\n" "wHaDrBBfESWnJDX/AGpVtlyOjPmgmK6J2usMPihQUDkKdAYrVWJePrMIxt1q6BMe\n" "iczs3qriMmtY3bUc4UyUwJ5fhDLjshHvfuIpYQyI6EXZM6dZksn9LylXJnigY6QJ\n" "HxOYO0BDwOsZ8yQ8J8afLk88i0GizEkgE1z3REtQUwgWfxr1WV/ud+T6/ZhSAgH9\n" "042mQvSFZnIUSEsmCvjhWuAunfxHKCTcAoYISWfzWpkCgYEA7gpf3HHU5Tn+CgUn\n" "1X5uGpG3DmcMgfeGgs2r2f/IIg/5Ac1dfYILiybL1tN9zbyLCJfcbFpWBc9hJL6f\n" "CPc5hUiwWFJqBJewxQkC1Ae/HakHbip+IZ+Jr0842O4BAArvixk4Lb7/N2Ct9sTE\n" "NJO6RtK9lbEZ5uK61DglHy8CS2UCgYEA4ZC1o36kPAMQBggajgnucb2yuUEelk0f\n" "AEr+GI32MGE+93xMr7rAhBoqLg4AITyIfEnOSQ5HwagnIHonBbv1LV/Gf9ursx8Z\n" "YOGbvT8zzzC+SU1bkDzdjAYnFQVGIjMtKOBJ3K07++ypwX1fr4QsQ8uKL8WSOWwt\n" "Z3Bym6XiZzMCgYADnhy+2OwHX85AkLt+PyGlPbmuelpyTzS4IDAQbBa6jcuW/2wA\n" "UE2km75VUXmD+u2R/9zVuLm99NzhFhSMqlUxdV1YukfqMfP5yp1EY6m/5aW7QuIP\n" "2MDa7TVL9rIFMiVZ09RKvbBbQxjhuzPQKL6X/PPspnhiTefQ+dl2k9xREQKBgHDS\n" "fMfGNEeAEKezrfSVqxphE9/tXms3L+ZpnCaT+yu/uEr5dTIAawKoQ6i9f/sf1/Sy\n" "xedsqR+IB+oKrzIDDWMgoJybN4pkZ8E5lzhVQIjFjKgFdWLzzqyW9z1gYfABQPlN\n" "FiS20WX0vgP1vcKAjdNrHzc9zyHBpgQzDmAj3NZZAoGBAI8vKCKdH7w3aL5CNkZQ\n" "2buIeWNA2HZazVwAGG5F2TU/LmXfRKnG6dX5bkU+AkBZh56jNZy//hfFSewJB4Kk\n" "buB7ERSdaNbO21zXt9FEA3+z0RfMd/Zv2vlIWOSB5nzl/7UKti3sribK6s9ZVLfi\n" "SxpiPQ8d/hmSGwn4ksrWUsJD\n" "-----END PRIVATE KEY-----\n"; bssl::UniquePtr bio(BIO_new_mem_buf(kKeyPEM, strlen(kKeyPEM))); return bssl::UniquePtr( PEM_read_bio_PrivateKey(bio.get(), nullptr, nullptr, nullptr)); } // Test that |SSL_get_client_CA_list| echoes back the configured parameter even // before configuring as a server. TEST(SSLTest, ClientCAList) { bssl::UniquePtr ctx(SSL_CTX_new(TLS_method())); ASSERT_TRUE(ctx); bssl::UniquePtr ssl(SSL_new(ctx.get())); ASSERT_TRUE(ssl); bssl::UniquePtr name(X509_NAME_new()); ASSERT_TRUE(name); bssl::UniquePtr name_dup(X509_NAME_dup(name.get())); ASSERT_TRUE(name_dup); bssl::UniquePtr stack(sk_X509_NAME_new_null()); ASSERT_TRUE(stack); ASSERT_TRUE(PushToStack(stack.get(), std::move(name_dup))); // |SSL_set_client_CA_list| takes ownership. SSL_set_client_CA_list(ssl.get(), stack.release()); STACK_OF(X509_NAME) *result = SSL_get_client_CA_list(ssl.get()); ASSERT_TRUE(result); ASSERT_EQ(1u, sk_X509_NAME_num(result)); EXPECT_EQ(0, X509_NAME_cmp(sk_X509_NAME_value(result, 0), name.get())); } TEST(SSLTest, AddClientCA) { bssl::UniquePtr ctx(SSL_CTX_new(TLS_method())); ASSERT_TRUE(ctx); bssl::UniquePtr ssl(SSL_new(ctx.get())); ASSERT_TRUE(ssl); bssl::UniquePtr cert1 = GetTestCertificate(); bssl::UniquePtr cert2 = GetChainTestCertificate(); ASSERT_TRUE(cert1 && cert2); X509_NAME *name1 = X509_get_subject_name(cert1.get()); X509_NAME *name2 = X509_get_subject_name(cert2.get()); EXPECT_EQ(0u, sk_X509_NAME_num(SSL_get_client_CA_list(ssl.get()))); ASSERT_TRUE(SSL_add_client_CA(ssl.get(), cert1.get())); ASSERT_TRUE(SSL_add_client_CA(ssl.get(), cert2.get())); STACK_OF(X509_NAME) *list = SSL_get_client_CA_list(ssl.get()); ASSERT_EQ(2u, sk_X509_NAME_num(list)); EXPECT_EQ(0, X509_NAME_cmp(sk_X509_NAME_value(list, 0), name1)); EXPECT_EQ(0, X509_NAME_cmp(sk_X509_NAME_value(list, 1), name2)); ASSERT_TRUE(SSL_add_client_CA(ssl.get(), cert1.get())); list = SSL_get_client_CA_list(ssl.get()); ASSERT_EQ(3u, sk_X509_NAME_num(list)); EXPECT_EQ(0, X509_NAME_cmp(sk_X509_NAME_value(list, 0), name1)); EXPECT_EQ(0, X509_NAME_cmp(sk_X509_NAME_value(list, 1), name2)); EXPECT_EQ(0, X509_NAME_cmp(sk_X509_NAME_value(list, 2), name1)); } static void AppendSession(SSL_SESSION *session, void *arg) { std::vector *out = reinterpret_cast*>(arg); out->push_back(session); } // CacheEquals returns true if |ctx|'s session cache consists of |expected|, in // order. static bool CacheEquals(SSL_CTX *ctx, const std::vector &expected) { // Check the linked list. SSL_SESSION *ptr = ctx->session_cache_head; for (SSL_SESSION *session : expected) { if (ptr != session) { return false; } // TODO(davidben): This is an absurd way to denote the end of the list. if (ptr->next == reinterpret_cast(&ctx->session_cache_tail)) { ptr = nullptr; } else { ptr = ptr->next; } } if (ptr != nullptr) { return false; } // Check the hash table. std::vector actual, expected_copy; lh_SSL_SESSION_doall_arg(ctx->sessions, AppendSession, &actual); expected_copy = expected; std::sort(actual.begin(), actual.end()); std::sort(expected_copy.begin(), expected_copy.end()); return actual == expected_copy; } static bssl::UniquePtr CreateTestSession(uint32_t number) { bssl::UniquePtr ssl_ctx(SSL_CTX_new(TLS_method())); if (!ssl_ctx) { return nullptr; } bssl::UniquePtr ret(SSL_SESSION_new(ssl_ctx.get())); if (!ret) { return nullptr; } uint8_t id[SSL3_SSL_SESSION_ID_LENGTH] = {0}; OPENSSL_memcpy(id, &number, sizeof(number)); if (!SSL_SESSION_set1_id(ret.get(), id, sizeof(id))) { return nullptr; } return ret; } // Test that the internal session cache behaves as expected. TEST(SSLTest, InternalSessionCache) { bssl::UniquePtr ctx(SSL_CTX_new(TLS_method())); ASSERT_TRUE(ctx); // Prepare 10 test sessions. std::vector> sessions; for (int i = 0; i < 10; i++) { bssl::UniquePtr session = CreateTestSession(i); ASSERT_TRUE(session); sessions.push_back(std::move(session)); } SSL_CTX_sess_set_cache_size(ctx.get(), 5); // Insert all the test sessions. for (const auto &session : sessions) { ASSERT_TRUE(SSL_CTX_add_session(ctx.get(), session.get())); } // Only the last five should be in the list. ASSERT_TRUE(CacheEquals( ctx.get(), {sessions[9].get(), sessions[8].get(), sessions[7].get(), sessions[6].get(), sessions[5].get()})); // Inserting an element already in the cache should fail and leave the cache // unchanged. ASSERT_FALSE(SSL_CTX_add_session(ctx.get(), sessions[7].get())); ASSERT_TRUE(CacheEquals( ctx.get(), {sessions[9].get(), sessions[8].get(), sessions[7].get(), sessions[6].get(), sessions[5].get()})); // Although collisions should be impossible (256-bit session IDs), the cache // must handle them gracefully. bssl::UniquePtr collision(CreateTestSession(7)); ASSERT_TRUE(collision); ASSERT_TRUE(SSL_CTX_add_session(ctx.get(), collision.get())); ASSERT_TRUE(CacheEquals( ctx.get(), {collision.get(), sessions[9].get(), sessions[8].get(), sessions[6].get(), sessions[5].get()})); // Removing sessions behaves correctly. ASSERT_TRUE(SSL_CTX_remove_session(ctx.get(), sessions[6].get())); ASSERT_TRUE(CacheEquals(ctx.get(), {collision.get(), sessions[9].get(), sessions[8].get(), sessions[5].get()})); // Removing sessions requires an exact match. ASSERT_FALSE(SSL_CTX_remove_session(ctx.get(), sessions[0].get())); ASSERT_FALSE(SSL_CTX_remove_session(ctx.get(), sessions[7].get())); // The cache remains unchanged. ASSERT_TRUE(CacheEquals(ctx.get(), {collision.get(), sessions[9].get(), sessions[8].get(), sessions[5].get()})); } static uint16_t EpochFromSequence(uint64_t seq) { return static_cast(seq >> 48); } static const uint8_t kTestName[] = { 0x30, 0x45, 0x31, 0x0b, 0x30, 0x09, 0x06, 0x03, 0x55, 0x04, 0x06, 0x13, 0x02, 0x41, 0x55, 0x31, 0x13, 0x30, 0x11, 0x06, 0x03, 0x55, 0x04, 0x08, 0x0c, 0x0a, 0x53, 0x6f, 0x6d, 0x65, 0x2d, 0x53, 0x74, 0x61, 0x74, 0x65, 0x31, 0x21, 0x30, 0x1f, 0x06, 0x03, 0x55, 0x04, 0x0a, 0x0c, 0x18, 0x49, 0x6e, 0x74, 0x65, 0x72, 0x6e, 0x65, 0x74, 0x20, 0x57, 0x69, 0x64, 0x67, 0x69, 0x74, 0x73, 0x20, 0x50, 0x74, 0x79, 0x20, 0x4c, 0x74, 0x64, }; static bool CompleteHandshakes(SSL *client, SSL *server) { // Drive both their handshakes to completion. for (;;) { int client_ret = SSL_do_handshake(client); int client_err = SSL_get_error(client, client_ret); if (client_err != SSL_ERROR_NONE && client_err != SSL_ERROR_WANT_READ && client_err != SSL_ERROR_WANT_WRITE && client_err != SSL_ERROR_PENDING_TICKET) { fprintf(stderr, "Client error: %d\n", client_err); return false; } int server_ret = SSL_do_handshake(server); int server_err = SSL_get_error(server, server_ret); if (server_err != SSL_ERROR_NONE && server_err != SSL_ERROR_WANT_READ && server_err != SSL_ERROR_WANT_WRITE && server_err != SSL_ERROR_PENDING_TICKET) { fprintf(stderr, "Server error: %d\n", server_err); return false; } if (client_ret == 1 && server_ret == 1) { break; } } return true; } static bool FlushNewSessionTickets(SSL *client, SSL *server) { // NewSessionTickets are deferred on the server to |SSL_write|, and clients do // not pick them up until |SSL_read|. for (;;) { int server_ret = SSL_write(server, nullptr, 0); int server_err = SSL_get_error(server, server_ret); // The server may either succeed (|server_ret| is zero) or block on write // (|server_ret| is -1 and |server_err| is |SSL_ERROR_WANT_WRITE|). if (server_ret > 0 || (server_ret < 0 && server_err != SSL_ERROR_WANT_WRITE)) { fprintf(stderr, "Unexpected server result: %d %d\n", server_ret, server_err); return false; } int client_ret = SSL_read(client, nullptr, 0); int client_err = SSL_get_error(client, client_ret); // The client must always block on read. if (client_ret != -1 || client_err != SSL_ERROR_WANT_READ) { fprintf(stderr, "Unexpected client result: %d %d\n", client_ret, client_err); return false; } // The server flushed everything it had to write. if (server_ret == 0) { return true; } } } struct ClientConfig { SSL_SESSION *session = nullptr; std::string servername; }; static bool ConnectClientAndServer(bssl::UniquePtr *out_client, bssl::UniquePtr *out_server, SSL_CTX *client_ctx, SSL_CTX *server_ctx, const ClientConfig &config = ClientConfig(), bool do_handshake = true, bool shed_handshake_config = true) { bssl::UniquePtr client(SSL_new(client_ctx)), server(SSL_new(server_ctx)); if (!client || !server) { return false; } SSL_set_connect_state(client.get()); SSL_set_accept_state(server.get()); if (config.session) { SSL_set_session(client.get(), config.session); } if (!config.servername.empty() && !SSL_set_tlsext_host_name(client.get(), config.servername.c_str())) { return false; } BIO *bio1, *bio2; if (!BIO_new_bio_pair(&bio1, 0, &bio2, 0)) { return false; } // SSL_set_bio takes ownership. SSL_set_bio(client.get(), bio1, bio1); SSL_set_bio(server.get(), bio2, bio2); SSL_set_shed_handshake_config(client.get(), shed_handshake_config); SSL_set_shed_handshake_config(server.get(), shed_handshake_config); if (do_handshake && !CompleteHandshakes(client.get(), server.get())) { return false; } *out_client = std::move(client); *out_server = std::move(server); return true; } // SSLVersionTest executes its test cases under all available protocol versions. // Test cases call |Connect| to create a connection using context objects with // the protocol version fixed to the current version under test. class SSLVersionTest : public ::testing::TestWithParam { protected: SSLVersionTest() : cert_(GetTestCertificate()), key_(GetTestKey()) {} void SetUp() { ResetContexts(); } bssl::UniquePtr CreateContext() const { const SSL_METHOD *method = is_dtls() ? DTLS_method() : TLS_method(); bssl::UniquePtr ctx(SSL_CTX_new(method)); if (!ctx || !SSL_CTX_set_min_proto_version(ctx.get(), version()) || !SSL_CTX_set_max_proto_version(ctx.get(), version())) { return nullptr; } return ctx; } void ResetContexts() { ASSERT_TRUE(cert_); ASSERT_TRUE(key_); client_ctx_ = CreateContext(); ASSERT_TRUE(client_ctx_); server_ctx_ = CreateContext(); ASSERT_TRUE(server_ctx_); // Set up a server cert. Client certs can be set up explicitly. ASSERT_TRUE(UseCertAndKey(server_ctx_.get())); } bool UseCertAndKey(SSL_CTX *ctx) const { return SSL_CTX_use_certificate(ctx, cert_.get()) && SSL_CTX_use_PrivateKey(ctx, key_.get()); } bool Connect(const ClientConfig &config = ClientConfig()) { return ConnectClientAndServer(&client_, &server_, client_ctx_.get(), server_ctx_.get(), config, true, shed_handshake_config_); } uint16_t version() const { return GetParam().version; } bool is_dtls() const { return GetParam().ssl_method == VersionParam::is_dtls; } bool shed_handshake_config_ = true; bssl::UniquePtr client_, server_; bssl::UniquePtr server_ctx_, client_ctx_; bssl::UniquePtr cert_; bssl::UniquePtr key_; }; INSTANTIATE_TEST_SUITE_P(WithVersion, SSLVersionTest, testing::ValuesIn(kAllVersions), [](const testing::TestParamInfo &i) { return i.param.name; }); TEST_P(SSLVersionTest, SequenceNumber) { ASSERT_TRUE(Connect()); // Drain any post-handshake messages to ensure there are no unread records // on either end. ASSERT_TRUE(FlushNewSessionTickets(client_.get(), server_.get())); uint64_t client_read_seq = SSL_get_read_sequence(client_.get()); uint64_t client_write_seq = SSL_get_write_sequence(client_.get()); uint64_t server_read_seq = SSL_get_read_sequence(server_.get()); uint64_t server_write_seq = SSL_get_write_sequence(server_.get()); if (is_dtls()) { // Both client and server must be at epoch 1. EXPECT_EQ(EpochFromSequence(client_read_seq), 1); EXPECT_EQ(EpochFromSequence(client_write_seq), 1); EXPECT_EQ(EpochFromSequence(server_read_seq), 1); EXPECT_EQ(EpochFromSequence(server_write_seq), 1); // The next record to be written should exceed the largest received. EXPECT_GT(client_write_seq, server_read_seq); EXPECT_GT(server_write_seq, client_read_seq); } else { // The next record to be written should equal the next to be received. EXPECT_EQ(client_write_seq, server_read_seq); EXPECT_EQ(server_write_seq, client_read_seq); } // Send a record from client to server. uint8_t byte = 0; EXPECT_EQ(SSL_write(client_.get(), &byte, 1), 1); EXPECT_EQ(SSL_read(server_.get(), &byte, 1), 1); // The client write and server read sequence numbers should have // incremented. EXPECT_EQ(client_write_seq + 1, SSL_get_write_sequence(client_.get())); EXPECT_EQ(server_read_seq + 1, SSL_get_read_sequence(server_.get())); } TEST_P(SSLVersionTest, OneSidedShutdown) { // SSL_shutdown is a no-op in DTLS. if (is_dtls()) { return; } ASSERT_TRUE(Connect()); // Shut down half the connection. SSL_shutdown will return 0 to signal only // one side has shut down. ASSERT_EQ(SSL_shutdown(client_.get()), 0); // Reading from the server should consume the EOF. uint8_t byte; ASSERT_EQ(SSL_read(server_.get(), &byte, 1), 0); ASSERT_EQ(SSL_get_error(server_.get(), 0), SSL_ERROR_ZERO_RETURN); // However, the server may continue to write data and then shut down the // connection. byte = 42; ASSERT_EQ(SSL_write(server_.get(), &byte, 1), 1); ASSERT_EQ(SSL_read(client_.get(), &byte, 1), 1); ASSERT_EQ(byte, 42); // The server may then shutdown the connection. EXPECT_EQ(SSL_shutdown(server_.get()), 1); EXPECT_EQ(SSL_shutdown(client_.get()), 1); } TEST(SSLTest, SessionDuplication) { bssl::UniquePtr client_ctx(SSL_CTX_new(TLS_method())); bssl::UniquePtr server_ctx(SSL_CTX_new(TLS_method())); ASSERT_TRUE(client_ctx); ASSERT_TRUE(server_ctx); bssl::UniquePtr cert = GetTestCertificate(); bssl::UniquePtr key = GetTestKey(); ASSERT_TRUE(cert); ASSERT_TRUE(key); ASSERT_TRUE(SSL_CTX_use_certificate(server_ctx.get(), cert.get())); ASSERT_TRUE(SSL_CTX_use_PrivateKey(server_ctx.get(), key.get())); bssl::UniquePtr client, server; ASSERT_TRUE(ConnectClientAndServer(&client, &server, client_ctx.get(), server_ctx.get())); SSL_SESSION *session0 = SSL_get_session(client.get()); bssl::UniquePtr session1 = bssl::SSL_SESSION_dup(session0, SSL_SESSION_DUP_ALL); ASSERT_TRUE(session1); session1->not_resumable = false; uint8_t *s0_bytes, *s1_bytes; size_t s0_len, s1_len; ASSERT_TRUE(SSL_SESSION_to_bytes(session0, &s0_bytes, &s0_len)); bssl::UniquePtr free_s0(s0_bytes); ASSERT_TRUE(SSL_SESSION_to_bytes(session1.get(), &s1_bytes, &s1_len)); bssl::UniquePtr free_s1(s1_bytes); EXPECT_EQ(Bytes(s0_bytes, s0_len), Bytes(s1_bytes, s1_len)); } static void ExpectFDs(const SSL *ssl, int rfd, int wfd) { EXPECT_EQ(rfd, SSL_get_fd(ssl)); EXPECT_EQ(rfd, SSL_get_rfd(ssl)); EXPECT_EQ(wfd, SSL_get_wfd(ssl)); // The wrapper BIOs are always equal when fds are equal, even if set // individually. if (rfd == wfd) { EXPECT_EQ(SSL_get_rbio(ssl), SSL_get_wbio(ssl)); } } TEST(SSLTest, SetFD) { bssl::UniquePtr ctx(SSL_CTX_new(TLS_method())); ASSERT_TRUE(ctx); // Test setting different read and write FDs. bssl::UniquePtr ssl(SSL_new(ctx.get())); ASSERT_TRUE(ssl); EXPECT_TRUE(SSL_set_rfd(ssl.get(), 1)); EXPECT_TRUE(SSL_set_wfd(ssl.get(), 2)); ExpectFDs(ssl.get(), 1, 2); // Test setting the same FD. ssl.reset(SSL_new(ctx.get())); ASSERT_TRUE(ssl); EXPECT_TRUE(SSL_set_fd(ssl.get(), 1)); ExpectFDs(ssl.get(), 1, 1); // Test setting the same FD one side at a time. ssl.reset(SSL_new(ctx.get())); ASSERT_TRUE(ssl); EXPECT_TRUE(SSL_set_rfd(ssl.get(), 1)); EXPECT_TRUE(SSL_set_wfd(ssl.get(), 1)); ExpectFDs(ssl.get(), 1, 1); // Test setting the same FD in the other order. ssl.reset(SSL_new(ctx.get())); ASSERT_TRUE(ssl); EXPECT_TRUE(SSL_set_wfd(ssl.get(), 1)); EXPECT_TRUE(SSL_set_rfd(ssl.get(), 1)); ExpectFDs(ssl.get(), 1, 1); // Test changing the read FD partway through. ssl.reset(SSL_new(ctx.get())); ASSERT_TRUE(ssl); EXPECT_TRUE(SSL_set_fd(ssl.get(), 1)); EXPECT_TRUE(SSL_set_rfd(ssl.get(), 2)); ExpectFDs(ssl.get(), 2, 1); // Test changing the write FD partway through. ssl.reset(SSL_new(ctx.get())); ASSERT_TRUE(ssl); EXPECT_TRUE(SSL_set_fd(ssl.get(), 1)); EXPECT_TRUE(SSL_set_wfd(ssl.get(), 2)); ExpectFDs(ssl.get(), 1, 2); // Test a no-op change to the read FD partway through. ssl.reset(SSL_new(ctx.get())); ASSERT_TRUE(ssl); EXPECT_TRUE(SSL_set_fd(ssl.get(), 1)); EXPECT_TRUE(SSL_set_rfd(ssl.get(), 1)); ExpectFDs(ssl.get(), 1, 1); // Test a no-op change to the write FD partway through. ssl.reset(SSL_new(ctx.get())); ASSERT_TRUE(ssl); EXPECT_TRUE(SSL_set_fd(ssl.get(), 1)); EXPECT_TRUE(SSL_set_wfd(ssl.get(), 1)); ExpectFDs(ssl.get(), 1, 1); // ASan builds will implicitly test that the internal |BIO| reference-counting // is correct. } TEST(SSLTest, SetBIO) { bssl::UniquePtr ctx(SSL_CTX_new(TLS_method())); ASSERT_TRUE(ctx); bssl::UniquePtr ssl(SSL_new(ctx.get())); bssl::UniquePtr bio1(BIO_new(BIO_s_mem())), bio2(BIO_new(BIO_s_mem())), bio3(BIO_new(BIO_s_mem())); ASSERT_TRUE(ssl); ASSERT_TRUE(bio1); ASSERT_TRUE(bio2); ASSERT_TRUE(bio3); // SSL_set_bio takes one reference when the parameters are the same. BIO_up_ref(bio1.get()); SSL_set_bio(ssl.get(), bio1.get(), bio1.get()); // Repeating the call does nothing. SSL_set_bio(ssl.get(), bio1.get(), bio1.get()); // It takes one reference each when the parameters are different. BIO_up_ref(bio2.get()); BIO_up_ref(bio3.get()); SSL_set_bio(ssl.get(), bio2.get(), bio3.get()); // Repeating the call does nothing. SSL_set_bio(ssl.get(), bio2.get(), bio3.get()); // It takes one reference when changing only wbio. BIO_up_ref(bio1.get()); SSL_set_bio(ssl.get(), bio2.get(), bio1.get()); // It takes one reference when changing only rbio and the two are different. BIO_up_ref(bio3.get()); SSL_set_bio(ssl.get(), bio3.get(), bio1.get()); // If setting wbio to rbio, it takes no additional references. SSL_set_bio(ssl.get(), bio3.get(), bio3.get()); // From there, wbio may be switched to something else. BIO_up_ref(bio1.get()); SSL_set_bio(ssl.get(), bio3.get(), bio1.get()); // If setting rbio to wbio, it takes no additional references. SSL_set_bio(ssl.get(), bio1.get(), bio1.get()); // From there, rbio may be switched to something else, but, for historical // reasons, it takes a reference to both parameters. BIO_up_ref(bio1.get()); BIO_up_ref(bio2.get()); SSL_set_bio(ssl.get(), bio2.get(), bio1.get()); // ASAN builds will implicitly test that the internal |BIO| reference-counting // is correct. } static int VerifySucceed(X509_STORE_CTX *store_ctx, void *arg) { return 1; } TEST_P(SSLVersionTest, GetPeerCertificate) { ASSERT_TRUE(UseCertAndKey(client_ctx_.get())); // Configure both client and server to accept any certificate. SSL_CTX_set_verify(client_ctx_.get(), SSL_VERIFY_PEER | SSL_VERIFY_FAIL_IF_NO_PEER_CERT, nullptr); SSL_CTX_set_cert_verify_callback(client_ctx_.get(), VerifySucceed, NULL); SSL_CTX_set_verify(server_ctx_.get(), SSL_VERIFY_PEER | SSL_VERIFY_FAIL_IF_NO_PEER_CERT, nullptr); SSL_CTX_set_cert_verify_callback(server_ctx_.get(), VerifySucceed, NULL); ASSERT_TRUE(Connect()); // Client and server should both see the leaf certificate. bssl::UniquePtr peer(SSL_get_peer_certificate(server_.get())); ASSERT_TRUE(peer); ASSERT_EQ(X509_cmp(cert_.get(), peer.get()), 0); peer.reset(SSL_get_peer_certificate(client_.get())); ASSERT_TRUE(peer); ASSERT_EQ(X509_cmp(cert_.get(), peer.get()), 0); // However, for historical reasons, the X509 chain includes the leaf on the // client, but does not on the server. EXPECT_EQ(sk_X509_num(SSL_get_peer_cert_chain(client_.get())), 1u); EXPECT_EQ(sk_CRYPTO_BUFFER_num(SSL_get0_peer_certificates(client_.get())), 1u); EXPECT_EQ(sk_X509_num(SSL_get_peer_cert_chain(server_.get())), 0u); EXPECT_EQ(sk_CRYPTO_BUFFER_num(SSL_get0_peer_certificates(server_.get())), 1u); } TEST_P(SSLVersionTest, NoPeerCertificate) { SSL_CTX_set_verify(server_ctx_.get(), SSL_VERIFY_PEER, nullptr); SSL_CTX_set_cert_verify_callback(server_ctx_.get(), VerifySucceed, NULL); SSL_CTX_set_cert_verify_callback(client_ctx_.get(), VerifySucceed, NULL); ASSERT_TRUE(Connect()); // Server should not see a peer certificate. bssl::UniquePtr peer(SSL_get_peer_certificate(server_.get())); ASSERT_FALSE(peer); ASSERT_FALSE(SSL_get0_peer_certificates(server_.get())); } TEST_P(SSLVersionTest, RetainOnlySHA256OfCerts) { uint8_t *cert_der = NULL; int cert_der_len = i2d_X509(cert_.get(), &cert_der); ASSERT_GE(cert_der_len, 0); bssl::UniquePtr free_cert_der(cert_der); uint8_t cert_sha256[SHA256_DIGEST_LENGTH]; SHA256(cert_der, cert_der_len, cert_sha256); ASSERT_TRUE(UseCertAndKey(client_ctx_.get())); // Configure both client and server to accept any certificate, but the // server must retain only the SHA-256 of the peer. SSL_CTX_set_verify(client_ctx_.get(), SSL_VERIFY_PEER | SSL_VERIFY_FAIL_IF_NO_PEER_CERT, nullptr); SSL_CTX_set_verify(server_ctx_.get(), SSL_VERIFY_PEER | SSL_VERIFY_FAIL_IF_NO_PEER_CERT, nullptr); SSL_CTX_set_cert_verify_callback(client_ctx_.get(), VerifySucceed, NULL); SSL_CTX_set_cert_verify_callback(server_ctx_.get(), VerifySucceed, NULL); SSL_CTX_set_retain_only_sha256_of_client_certs(server_ctx_.get(), 1); ASSERT_TRUE(Connect()); // The peer certificate has been dropped. bssl::UniquePtr peer(SSL_get_peer_certificate(server_.get())); EXPECT_FALSE(peer); SSL_SESSION *session = SSL_get_session(server_.get()); EXPECT_TRUE(SSL_SESSION_has_peer_sha256(session)); const uint8_t *peer_sha256; size_t peer_sha256_len; SSL_SESSION_get0_peer_sha256(session, &peer_sha256, &peer_sha256_len); EXPECT_EQ(Bytes(cert_sha256), Bytes(peer_sha256, peer_sha256_len)); } // Tests that our ClientHellos do not change unexpectedly. These are purely // change detection tests. If they fail as part of an intentional ClientHello // change, update the test vector. TEST(SSLTest, ClientHello) { struct { uint16_t max_version; std::vector expected; } kTests[] = { {TLS1_VERSION, {0x16, 0x03, 0x01, 0x00, 0x5a, 0x01, 0x00, 0x00, 0x56, 0x03, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x0e, 0xc0, 0x09, 0xc0, 0x13, 0xc0, 0x0a, 0xc0, 0x14, 0x00, 0x2f, 0x00, 0x35, 0x00, 0x0a, 0x01, 0x00, 0x00, 0x1f, 0x00, 0x17, 0x00, 0x00, 0xff, 0x01, 0x00, 0x01, 0x00, 0x00, 0x0a, 0x00, 0x08, 0x00, 0x06, 0x00, 0x1d, 0x00, 0x17, 0x00, 0x18, 0x00, 0x0b, 0x00, 0x02, 0x01, 0x00, 0x00, 0x23, 0x00, 0x00}}, {TLS1_1_VERSION, {0x16, 0x03, 0x01, 0x00, 0x5a, 0x01, 0x00, 0x00, 0x56, 0x03, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x0e, 0xc0, 0x09, 0xc0, 0x13, 0xc0, 0x0a, 0xc0, 0x14, 0x00, 0x2f, 0x00, 0x35, 0x00, 0x0a, 0x01, 0x00, 0x00, 0x1f, 0x00, 0x17, 0x00, 0x00, 0xff, 0x01, 0x00, 0x01, 0x00, 0x00, 0x0a, 0x00, 0x08, 0x00, 0x06, 0x00, 0x1d, 0x00, 0x17, 0x00, 0x18, 0x00, 0x0b, 0x00, 0x02, 0x01, 0x00, 0x00, 0x23, 0x00, 0x00}}, {TLS1_2_VERSION, {0x16, 0x03, 0x01, 0x00, 0x82, 0x01, 0x00, 0x00, 0x7e, 0x03, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x1e, 0xcc, 0xa9, 0xcc, 0xa8, 0xc0, 0x2b, 0xc0, 0x2f, 0xc0, 0x2c, 0xc0, 0x30, 0xc0, 0x09, 0xc0, 0x13, 0xc0, 0x0a, 0xc0, 0x14, 0x00, 0x9c, 0x00, 0x9d, 0x00, 0x2f, 0x00, 0x35, 0x00, 0x0a, 0x01, 0x00, 0x00, 0x37, 0x00, 0x17, 0x00, 0x00, 0xff, 0x01, 0x00, 0x01, 0x00, 0x00, 0x0a, 0x00, 0x08, 0x00, 0x06, 0x00, 0x1d, 0x00, 0x17, 0x00, 0x18, 0x00, 0x0b, 0x00, 0x02, 0x01, 0x00, 0x00, 0x23, 0x00, 0x00, 0x00, 0x0d, 0x00, 0x14, 0x00, 0x12, 0x04, 0x03, 0x08, 0x04, 0x04, 0x01, 0x05, 0x03, 0x08, 0x05, 0x05, 0x01, 0x08, 0x06, 0x06, 0x01, 0x02, 0x01}}, // TODO(davidben): Add a change detector for TLS 1.3 once the spec and our // implementation has settled enough that it won't change. }; for (const auto &t : kTests) { SCOPED_TRACE(t.max_version); bssl::UniquePtr ctx(SSL_CTX_new(TLS_method())); ASSERT_TRUE(ctx); // Our default cipher list varies by CPU capabilities, so manually place the // ChaCha20 ciphers in front. const char *cipher_list = "CHACHA20:ALL"; ASSERT_TRUE(SSL_CTX_set_max_proto_version(ctx.get(), t.max_version)); ASSERT_TRUE(SSL_CTX_set_strict_cipher_list(ctx.get(), cipher_list)); bssl::UniquePtr ssl(SSL_new(ctx.get())); ASSERT_TRUE(ssl); std::vector client_hello; ASSERT_TRUE(GetClientHello(ssl.get(), &client_hello)); // Zero the client_random. constexpr size_t kRandomOffset = 1 + 2 + 2 + // record header 1 + 3 + // handshake message header 2; // client_version ASSERT_GE(client_hello.size(), kRandomOffset + SSL3_RANDOM_SIZE); OPENSSL_memset(client_hello.data() + kRandomOffset, 0, SSL3_RANDOM_SIZE); if (client_hello != t.expected) { ADD_FAILURE() << "ClientHellos did not match."; // Print the value manually so it is easier to update the test vector. for (size_t i = 0; i < client_hello.size(); i += 12) { printf(" %c", i == 0 ? '{' : ' '); for (size_t j = i; j < client_hello.size() && j < i + 12; j++) { if (j > i) { printf(" "); } printf("0x%02x", client_hello[j]); if (j < client_hello.size() - 1) { printf(","); } } if (i + 12 >= client_hello.size()) { printf("}},"); } printf("\n"); } } } } static bssl::UniquePtr g_last_session; static int SaveLastSession(SSL *ssl, SSL_SESSION *session) { // Save the most recent session. g_last_session.reset(session); return 1; } static bssl::UniquePtr CreateClientSession( SSL_CTX *client_ctx, SSL_CTX *server_ctx, const ClientConfig &config = ClientConfig()) { g_last_session = nullptr; SSL_CTX_sess_set_new_cb(client_ctx, SaveLastSession); // Connect client and server to get a session. bssl::UniquePtr client, server; if (!ConnectClientAndServer(&client, &server, client_ctx, server_ctx, config) || !FlushNewSessionTickets(client.get(), server.get())) { fprintf(stderr, "Failed to connect client and server.\n"); return nullptr; } SSL_CTX_sess_set_new_cb(client_ctx, nullptr); if (!g_last_session) { fprintf(stderr, "Client did not receive a session.\n"); return nullptr; } return std::move(g_last_session); } static void ExpectSessionReused(SSL_CTX *client_ctx, SSL_CTX *server_ctx, SSL_SESSION *session, bool want_reused) { bssl::UniquePtr client, server; ClientConfig config; config.session = session; EXPECT_TRUE( ConnectClientAndServer(&client, &server, client_ctx, server_ctx, config)); EXPECT_EQ(SSL_session_reused(client.get()), SSL_session_reused(server.get())); bool was_reused = !!SSL_session_reused(client.get()); EXPECT_EQ(was_reused, want_reused); } static bssl::UniquePtr ExpectSessionRenewed(SSL_CTX *client_ctx, SSL_CTX *server_ctx, SSL_SESSION *session) { g_last_session = nullptr; SSL_CTX_sess_set_new_cb(client_ctx, SaveLastSession); bssl::UniquePtr client, server; ClientConfig config; config.session = session; if (!ConnectClientAndServer(&client, &server, client_ctx, server_ctx, config) || !FlushNewSessionTickets(client.get(), server.get())) { fprintf(stderr, "Failed to connect client and server.\n"); return nullptr; } if (SSL_session_reused(client.get()) != SSL_session_reused(server.get())) { fprintf(stderr, "Client and server were inconsistent.\n"); return nullptr; } if (!SSL_session_reused(client.get())) { fprintf(stderr, "Session was not reused.\n"); return nullptr; } SSL_CTX_sess_set_new_cb(client_ctx, nullptr); if (!g_last_session) { fprintf(stderr, "Client did not receive a renewed session.\n"); return nullptr; } return std::move(g_last_session); } static void ExpectTicketKeyChanged(SSL_CTX *ctx, uint8_t *inout_key, bool changed) { uint8_t new_key[kTicketKeyLen]; // May return 0, 1 or 48. ASSERT_EQ(SSL_CTX_get_tlsext_ticket_keys(ctx, new_key, kTicketKeyLen), 1); if (changed) { ASSERT_NE(Bytes(inout_key, kTicketKeyLen), Bytes(new_key)); } else { ASSERT_EQ(Bytes(inout_key, kTicketKeyLen), Bytes(new_key)); } OPENSSL_memcpy(inout_key, new_key, kTicketKeyLen); } static int SwitchSessionIDContextSNI(SSL *ssl, int *out_alert, void *arg) { static const uint8_t kContext[] = {3}; if (!SSL_set_session_id_context(ssl, kContext, sizeof(kContext))) { return SSL_TLSEXT_ERR_ALERT_FATAL; } return SSL_TLSEXT_ERR_OK; } TEST_P(SSLVersionTest, SessionIDContext) { static const uint8_t kContext1[] = {1}; static const uint8_t kContext2[] = {2}; ASSERT_TRUE(SSL_CTX_set_session_id_context(server_ctx_.get(), kContext1, sizeof(kContext1))); SSL_CTX_set_session_cache_mode(client_ctx_.get(), SSL_SESS_CACHE_BOTH); SSL_CTX_set_session_cache_mode(server_ctx_.get(), SSL_SESS_CACHE_BOTH); bssl::UniquePtr session = CreateClientSession(client_ctx_.get(), server_ctx_.get()); ASSERT_TRUE(session); TRACED_CALL(ExpectSessionReused(client_ctx_.get(), server_ctx_.get(), session.get(), true /* expect session reused */)); // Change the session ID context. ASSERT_TRUE(SSL_CTX_set_session_id_context(server_ctx_.get(), kContext2, sizeof(kContext2))); TRACED_CALL(ExpectSessionReused(client_ctx_.get(), server_ctx_.get(), session.get(), false /* expect session not reused */)); // Change the session ID context back and install an SNI callback to switch // it. ASSERT_TRUE(SSL_CTX_set_session_id_context(server_ctx_.get(), kContext1, sizeof(kContext1))); SSL_CTX_set_tlsext_servername_callback(server_ctx_.get(), SwitchSessionIDContextSNI); TRACED_CALL(ExpectSessionReused(client_ctx_.get(), server_ctx_.get(), session.get(), false /* expect session not reused */)); // Switch the session ID context with the early callback instead. SSL_CTX_set_tlsext_servername_callback(server_ctx_.get(), nullptr); SSL_CTX_set_select_certificate_cb( server_ctx_.get(), [](const SSL_CLIENT_HELLO *client_hello) -> ssl_select_cert_result_t { static const uint8_t kContext[] = {3}; if (!SSL_set_session_id_context(client_hello->ssl, kContext, sizeof(kContext))) { return ssl_select_cert_error; } return ssl_select_cert_success; }); TRACED_CALL(ExpectSessionReused(client_ctx_.get(), server_ctx_.get(), session.get(), false /* expect session not reused */)); } static timeval g_current_time; static void CurrentTimeCallback(const SSL *ssl, timeval *out_clock) { *out_clock = g_current_time; } static void FrozenTimeCallback(const SSL *ssl, timeval *out_clock) { out_clock->tv_sec = 1000; out_clock->tv_usec = 0; } static int RenewTicketCallback(SSL *ssl, uint8_t *key_name, uint8_t *iv, EVP_CIPHER_CTX *ctx, HMAC_CTX *hmac_ctx, int encrypt) { static const uint8_t kZeros[16] = {0}; if (encrypt) { OPENSSL_memcpy(key_name, kZeros, sizeof(kZeros)); RAND_bytes(iv, 16); } else if (OPENSSL_memcmp(key_name, kZeros, 16) != 0) { return 0; } if (!HMAC_Init_ex(hmac_ctx, kZeros, sizeof(kZeros), EVP_sha256(), NULL) || !EVP_CipherInit_ex(ctx, EVP_aes_128_cbc(), NULL, kZeros, iv, encrypt)) { return -1; } // Returning two from the callback in decrypt mode renews the // session in TLS 1.2 and below. return encrypt ? 1 : 2; } static bool GetServerTicketTime(long *out, const SSL_SESSION *session) { const uint8_t *ticket; size_t ticket_len; SSL_SESSION_get0_ticket(session, &ticket, &ticket_len); if (ticket_len < 16 + 16 + SHA256_DIGEST_LENGTH) { return false; } const uint8_t *ciphertext = ticket + 16 + 16; size_t len = ticket_len - 16 - 16 - SHA256_DIGEST_LENGTH; std::unique_ptr plaintext(new uint8_t[len]); #if defined(BORINGSSL_UNSAFE_FUZZER_MODE) // Fuzzer-mode tickets are unencrypted. OPENSSL_memcpy(plaintext.get(), ciphertext, len); #else static const uint8_t kZeros[16] = {0}; const uint8_t *iv = ticket + 16; bssl::ScopedEVP_CIPHER_CTX ctx; int len1, len2; if (!EVP_DecryptInit_ex(ctx.get(), EVP_aes_128_cbc(), nullptr, kZeros, iv) || !EVP_DecryptUpdate(ctx.get(), plaintext.get(), &len1, ciphertext, len) || !EVP_DecryptFinal_ex(ctx.get(), plaintext.get() + len1, &len2)) { return false; } len = static_cast(len1 + len2); #endif bssl::UniquePtr ssl_ctx(SSL_CTX_new(TLS_method())); if (!ssl_ctx) { return false; } bssl::UniquePtr server_session( SSL_SESSION_from_bytes(plaintext.get(), len, ssl_ctx.get())); if (!server_session) { return false; } *out = SSL_SESSION_get_time(server_session.get()); return true; } TEST_P(SSLVersionTest, SessionTimeout) { for (bool server_test : {false, true}) { SCOPED_TRACE(server_test); ResetContexts(); SSL_CTX_set_session_cache_mode(client_ctx_.get(), SSL_SESS_CACHE_BOTH); SSL_CTX_set_session_cache_mode(server_ctx_.get(), SSL_SESS_CACHE_BOTH); static const time_t kStartTime = 1000; g_current_time.tv_sec = kStartTime; // We are willing to use a longer lifetime for TLS 1.3 sessions as // resumptions still perform ECDHE. const time_t timeout = version() == TLS1_3_VERSION ? SSL_DEFAULT_SESSION_PSK_DHE_TIMEOUT : SSL_DEFAULT_SESSION_TIMEOUT; // Both client and server must enforce session timeouts. We configure the // other side with a frozen clock so it never expires tickets. if (server_test) { SSL_CTX_set_current_time_cb(client_ctx_.get(), FrozenTimeCallback); SSL_CTX_set_current_time_cb(server_ctx_.get(), CurrentTimeCallback); } else { SSL_CTX_set_current_time_cb(client_ctx_.get(), CurrentTimeCallback); SSL_CTX_set_current_time_cb(server_ctx_.get(), FrozenTimeCallback); } // Configure a ticket callback which renews tickets. SSL_CTX_set_tlsext_ticket_key_cb(server_ctx_.get(), RenewTicketCallback); bssl::UniquePtr session = CreateClientSession(client_ctx_.get(), server_ctx_.get()); ASSERT_TRUE(session); // Advance the clock just behind the timeout. g_current_time.tv_sec += timeout - 1; TRACED_CALL(ExpectSessionReused(client_ctx_.get(), server_ctx_.get(), session.get(), true /* expect session reused */)); // Advance the clock one more second. g_current_time.tv_sec++; TRACED_CALL(ExpectSessionReused(client_ctx_.get(), server_ctx_.get(), session.get(), false /* expect session not reused */)); // Rewind the clock to before the session was minted. g_current_time.tv_sec = kStartTime - 1; TRACED_CALL(ExpectSessionReused(client_ctx_.get(), server_ctx_.get(), session.get(), false /* expect session not reused */)); // Renew the session 10 seconds before expiration. time_t new_start_time = kStartTime + timeout - 10; g_current_time.tv_sec = new_start_time; bssl::UniquePtr new_session = ExpectSessionRenewed( client_ctx_.get(), server_ctx_.get(), session.get()); ASSERT_TRUE(new_session); // This new session is not the same object as before. EXPECT_NE(session.get(), new_session.get()); // Check the sessions have timestamps measured from issuance. long session_time = 0; if (server_test) { ASSERT_TRUE(GetServerTicketTime(&session_time, new_session.get())); } else { session_time = SSL_SESSION_get_time(new_session.get()); } ASSERT_EQ(session_time, g_current_time.tv_sec); if (version() == TLS1_3_VERSION) { // Renewal incorporates fresh key material in TLS 1.3, so we extend the // lifetime TLS 1.3. g_current_time.tv_sec = new_start_time + timeout - 1; TRACED_CALL(ExpectSessionReused(client_ctx_.get(), server_ctx_.get(), new_session.get(), true /* expect session reused */)); // The new session expires after the new timeout. g_current_time.tv_sec = new_start_time + timeout + 1; TRACED_CALL(ExpectSessionReused(client_ctx_.get(), server_ctx_.get(), new_session.get(), false /* expect session ot reused */)); // Renew the session until it begins just past the auth timeout. time_t auth_end_time = kStartTime + SSL_DEFAULT_SESSION_AUTH_TIMEOUT; while (new_start_time < auth_end_time - 1000) { // Get as close as possible to target start time. new_start_time = std::min(auth_end_time - 1000, new_start_time + timeout - 1); g_current_time.tv_sec = new_start_time; new_session = ExpectSessionRenewed(client_ctx_.get(), server_ctx_.get(), new_session.get()); ASSERT_TRUE(new_session); } // Now the session's lifetime is bound by the auth timeout. g_current_time.tv_sec = auth_end_time - 1; TRACED_CALL(ExpectSessionReused(client_ctx_.get(), server_ctx_.get(), new_session.get(), true /* expect session reused */)); g_current_time.tv_sec = auth_end_time + 1; TRACED_CALL(ExpectSessionReused(client_ctx_.get(), server_ctx_.get(), new_session.get(), false /* expect session ot reused */)); } else { // The new session is usable just before the old expiration. g_current_time.tv_sec = kStartTime + timeout - 1; TRACED_CALL(ExpectSessionReused(client_ctx_.get(), server_ctx_.get(), new_session.get(), true /* expect session reused */)); // Renewal does not extend the lifetime, so it is not usable beyond the // old expiration. g_current_time.tv_sec = kStartTime + timeout + 1; TRACED_CALL(ExpectSessionReused(client_ctx_.get(), server_ctx_.get(), new_session.get(), false /* expect session not reused */)); } } } TEST_P(SSLVersionTest, DefaultTicketKeyInitialization) { static const uint8_t kZeroKey[kTicketKeyLen] = {}; uint8_t ticket_key[kTicketKeyLen]; ASSERT_EQ(1, SSL_CTX_get_tlsext_ticket_keys(server_ctx_.get(), ticket_key, kTicketKeyLen)); ASSERT_NE(0, OPENSSL_memcmp(ticket_key, kZeroKey, kTicketKeyLen)); } TEST_P(SSLVersionTest, DefaultTicketKeyRotation) { static const time_t kStartTime = 1001; g_current_time.tv_sec = kStartTime; // We use session reuse as a proxy for ticket decryption success, hence // disable session timeouts. SSL_CTX_set_timeout(server_ctx_.get(), std::numeric_limits::max()); SSL_CTX_set_session_psk_dhe_timeout(server_ctx_.get(), std::numeric_limits::max()); SSL_CTX_set_current_time_cb(client_ctx_.get(), FrozenTimeCallback); SSL_CTX_set_current_time_cb(server_ctx_.get(), CurrentTimeCallback); SSL_CTX_set_session_cache_mode(client_ctx_.get(), SSL_SESS_CACHE_BOTH); SSL_CTX_set_session_cache_mode(server_ctx_.get(), SSL_SESS_CACHE_OFF); // Initialize ticket_key with the current key and check that it was // initialized to something, not all zeros. uint8_t ticket_key[kTicketKeyLen] = {0}; TRACED_CALL(ExpectTicketKeyChanged(server_ctx_.get(), ticket_key, true /* changed */)); // Verify ticket resumption actually works. bssl::UniquePtr client, server; bssl::UniquePtr session = CreateClientSession(client_ctx_.get(), server_ctx_.get()); ASSERT_TRUE(session); TRACED_CALL(ExpectSessionReused(client_ctx_.get(), server_ctx_.get(), session.get(), true /* reused */)); // Advance time to just before key rotation. g_current_time.tv_sec += SSL_DEFAULT_TICKET_KEY_ROTATION_INTERVAL - 1; TRACED_CALL(ExpectSessionReused(client_ctx_.get(), server_ctx_.get(), session.get(), true /* reused */)); TRACED_CALL(ExpectTicketKeyChanged(server_ctx_.get(), ticket_key, false /* NOT changed */)); // Force key rotation. g_current_time.tv_sec += 1; bssl::UniquePtr new_session = CreateClientSession(client_ctx_.get(), server_ctx_.get()); TRACED_CALL(ExpectTicketKeyChanged(server_ctx_.get(), ticket_key, true /* changed */)); // Resumption with both old and new ticket should work. TRACED_CALL(ExpectSessionReused(client_ctx_.get(), server_ctx_.get(), session.get(), true /* reused */)); TRACED_CALL(ExpectSessionReused(client_ctx_.get(), server_ctx_.get(), new_session.get(), true /* reused */)); TRACED_CALL(ExpectTicketKeyChanged(server_ctx_.get(), ticket_key, false /* NOT changed */)); // Force key rotation again. Resumption with the old ticket now fails. g_current_time.tv_sec += SSL_DEFAULT_TICKET_KEY_ROTATION_INTERVAL; TRACED_CALL(ExpectSessionReused(client_ctx_.get(), server_ctx_.get(), session.get(), false /* NOT reused */)); TRACED_CALL(ExpectTicketKeyChanged(server_ctx_.get(), ticket_key, true /* changed */)); // But resumption with the newer session still works. TRACED_CALL(ExpectSessionReused(client_ctx_.get(), server_ctx_.get(), new_session.get(), true /* reused */)); } static int SwitchContext(SSL *ssl, int *out_alert, void *arg) { SSL_CTX *ctx = reinterpret_cast(arg); SSL_set_SSL_CTX(ssl, ctx); return SSL_TLSEXT_ERR_OK; } TEST_P(SSLVersionTest, SNICallback) { bssl::UniquePtr cert2 = GetECDSATestCertificate(); ASSERT_TRUE(cert2); bssl::UniquePtr key2 = GetECDSATestKey(); ASSERT_TRUE(key2); // Test that switching the |SSL_CTX| at the SNI callback behaves correctly. static const uint16_t kECDSAWithSHA256 = SSL_SIGN_ECDSA_SECP256R1_SHA256; static const uint8_t kSCTList[] = {0, 6, 0, 4, 5, 6, 7, 8}; static const uint8_t kOCSPResponse[] = {1, 2, 3, 4}; bssl::UniquePtr server_ctx2 = CreateContext(); ASSERT_TRUE(server_ctx2); ASSERT_TRUE(SSL_CTX_use_certificate(server_ctx2.get(), cert2.get())); ASSERT_TRUE(SSL_CTX_use_PrivateKey(server_ctx2.get(), key2.get())); ASSERT_TRUE(SSL_CTX_set_signed_cert_timestamp_list( server_ctx2.get(), kSCTList, sizeof(kSCTList))); ASSERT_TRUE(SSL_CTX_set_ocsp_response(server_ctx2.get(), kOCSPResponse, sizeof(kOCSPResponse))); // Historically signing preferences would be lost in some cases with the // SNI callback, which triggers the TLS 1.2 SHA-1 default. To ensure // this doesn't happen when |version| is TLS 1.2, configure the private // key to only sign SHA-256. ASSERT_TRUE(SSL_CTX_set_signing_algorithm_prefs(server_ctx2.get(), &kECDSAWithSHA256, 1)); SSL_CTX_set_tlsext_servername_callback(server_ctx_.get(), SwitchContext); SSL_CTX_set_tlsext_servername_arg(server_ctx_.get(), server_ctx2.get()); SSL_CTX_enable_signed_cert_timestamps(client_ctx_.get()); SSL_CTX_enable_ocsp_stapling(client_ctx_.get()); ASSERT_TRUE(Connect()); // The client should have received |cert2|. bssl::UniquePtr peer(SSL_get_peer_certificate(client_.get())); ASSERT_TRUE(peer); EXPECT_EQ(X509_cmp(peer.get(), cert2.get()), 0); // The client should have received |server_ctx2|'s SCT list. const uint8_t *data; size_t len; SSL_get0_signed_cert_timestamp_list(client_.get(), &data, &len); EXPECT_EQ(Bytes(kSCTList), Bytes(data, len)); // The client should have received |server_ctx2|'s OCSP response. SSL_get0_ocsp_response(client_.get(), &data, &len); EXPECT_EQ(Bytes(kOCSPResponse), Bytes(data, len)); } // Test that the early callback can swap the maximum version. TEST(SSLTest, EarlyCallbackVersionSwitch) { bssl::UniquePtr cert = GetTestCertificate(); bssl::UniquePtr key = GetTestKey(); bssl::UniquePtr server_ctx(SSL_CTX_new(TLS_method())); bssl::UniquePtr client_ctx(SSL_CTX_new(TLS_method())); ASSERT_TRUE(cert); ASSERT_TRUE(key); ASSERT_TRUE(server_ctx); ASSERT_TRUE(client_ctx); ASSERT_TRUE(SSL_CTX_use_certificate(server_ctx.get(), cert.get())); ASSERT_TRUE(SSL_CTX_use_PrivateKey(server_ctx.get(), key.get())); ASSERT_TRUE(SSL_CTX_set_max_proto_version(client_ctx.get(), TLS1_3_VERSION)); ASSERT_TRUE(SSL_CTX_set_max_proto_version(server_ctx.get(), TLS1_3_VERSION)); SSL_CTX_set_select_certificate_cb( server_ctx.get(), [](const SSL_CLIENT_HELLO *client_hello) -> ssl_select_cert_result_t { if (!SSL_set_max_proto_version(client_hello->ssl, TLS1_2_VERSION)) { return ssl_select_cert_error; } return ssl_select_cert_success; }); bssl::UniquePtr client, server; ASSERT_TRUE(ConnectClientAndServer(&client, &server, client_ctx.get(), server_ctx.get())); EXPECT_EQ(TLS1_2_VERSION, SSL_version(client.get())); } TEST(SSLTest, SetVersion) { bssl::UniquePtr ctx(SSL_CTX_new(TLS_method())); ASSERT_TRUE(ctx); // Set valid TLS versions. EXPECT_TRUE(SSL_CTX_set_max_proto_version(ctx.get(), TLS1_VERSION)); EXPECT_TRUE(SSL_CTX_set_max_proto_version(ctx.get(), TLS1_1_VERSION)); EXPECT_TRUE(SSL_CTX_set_min_proto_version(ctx.get(), TLS1_VERSION)); EXPECT_TRUE(SSL_CTX_set_min_proto_version(ctx.get(), TLS1_1_VERSION)); // Invalid TLS versions are rejected. EXPECT_FALSE(SSL_CTX_set_max_proto_version(ctx.get(), DTLS1_VERSION)); EXPECT_FALSE(SSL_CTX_set_max_proto_version(ctx.get(), 0x0200)); EXPECT_FALSE(SSL_CTX_set_max_proto_version(ctx.get(), 0x1234)); EXPECT_FALSE(SSL_CTX_set_min_proto_version(ctx.get(), DTLS1_VERSION)); EXPECT_FALSE(SSL_CTX_set_min_proto_version(ctx.get(), 0x0200)); EXPECT_FALSE(SSL_CTX_set_min_proto_version(ctx.get(), 0x1234)); // Zero is the default version. EXPECT_TRUE(SSL_CTX_set_max_proto_version(ctx.get(), 0)); EXPECT_EQ(TLS1_2_VERSION, SSL_CTX_get_max_proto_version(ctx.get())); EXPECT_TRUE(SSL_CTX_set_min_proto_version(ctx.get(), 0)); EXPECT_EQ(TLS1_VERSION, SSL_CTX_get_min_proto_version(ctx.get())); // TLS 1.3 is available, but not by default. EXPECT_TRUE(SSL_CTX_set_max_proto_version(ctx.get(), TLS1_3_VERSION)); EXPECT_EQ(TLS1_3_VERSION, SSL_CTX_get_max_proto_version(ctx.get())); // SSL 3.0 is not available. EXPECT_FALSE(SSL_CTX_set_min_proto_version(ctx.get(), SSL3_VERSION)); ctx.reset(SSL_CTX_new(DTLS_method())); ASSERT_TRUE(ctx); EXPECT_TRUE(SSL_CTX_set_max_proto_version(ctx.get(), DTLS1_VERSION)); EXPECT_TRUE(SSL_CTX_set_max_proto_version(ctx.get(), DTLS1_2_VERSION)); EXPECT_TRUE(SSL_CTX_set_min_proto_version(ctx.get(), DTLS1_VERSION)); EXPECT_TRUE(SSL_CTX_set_min_proto_version(ctx.get(), DTLS1_2_VERSION)); EXPECT_FALSE(SSL_CTX_set_max_proto_version(ctx.get(), TLS1_VERSION)); EXPECT_FALSE(SSL_CTX_set_max_proto_version(ctx.get(), 0xfefe /* DTLS 1.1 */)); EXPECT_FALSE(SSL_CTX_set_max_proto_version(ctx.get(), 0xfffe /* DTLS 0.1 */)); EXPECT_FALSE(SSL_CTX_set_max_proto_version(ctx.get(), 0x1234)); EXPECT_FALSE(SSL_CTX_set_min_proto_version(ctx.get(), TLS1_VERSION)); EXPECT_FALSE(SSL_CTX_set_min_proto_version(ctx.get(), 0xfefe /* DTLS 1.1 */)); EXPECT_FALSE(SSL_CTX_set_min_proto_version(ctx.get(), 0xfffe /* DTLS 0.1 */)); EXPECT_FALSE(SSL_CTX_set_min_proto_version(ctx.get(), 0x1234)); EXPECT_TRUE(SSL_CTX_set_max_proto_version(ctx.get(), 0)); EXPECT_EQ(DTLS1_2_VERSION, SSL_CTX_get_max_proto_version(ctx.get())); EXPECT_TRUE(SSL_CTX_set_min_proto_version(ctx.get(), 0)); EXPECT_EQ(DTLS1_VERSION, SSL_CTX_get_min_proto_version(ctx.get())); } static const char *GetVersionName(uint16_t version) { switch (version) { case TLS1_VERSION: return "TLSv1"; case TLS1_1_VERSION: return "TLSv1.1"; case TLS1_2_VERSION: return "TLSv1.2"; case TLS1_3_VERSION: return "TLSv1.3"; case DTLS1_VERSION: return "DTLSv1"; case DTLS1_2_VERSION: return "DTLSv1.2"; default: return "???"; } } TEST_P(SSLVersionTest, Version) { ASSERT_TRUE(Connect()); EXPECT_EQ(SSL_version(client_.get()), version()); EXPECT_EQ(SSL_version(server_.get()), version()); // Test the version name is reported as expected. const char *version_name = GetVersionName(version()); EXPECT_EQ(strcmp(version_name, SSL_get_version(client_.get())), 0); EXPECT_EQ(strcmp(version_name, SSL_get_version(server_.get())), 0); // Test SSL_SESSION reports the same name. const char *client_name = SSL_SESSION_get_version(SSL_get_session(client_.get())); const char *server_name = SSL_SESSION_get_version(SSL_get_session(server_.get())); EXPECT_EQ(strcmp(version_name, client_name), 0); EXPECT_EQ(strcmp(version_name, server_name), 0); } // Tests that that |SSL_get_pending_cipher| is available during the ALPN // selection callback. TEST_P(SSLVersionTest, ALPNCipherAvailable) { ASSERT_TRUE(UseCertAndKey(client_ctx_.get())); static const uint8_t kALPNProtos[] = {0x03, 'f', 'o', 'o'}; ASSERT_EQ(SSL_CTX_set_alpn_protos(client_ctx_.get(), kALPNProtos, sizeof(kALPNProtos)), 0); // The ALPN callback does not fail the handshake on error, so have the // callback write a boolean. std::pair callback_state(version(), false); SSL_CTX_set_alpn_select_cb( server_ctx_.get(), [](SSL *ssl, const uint8_t **out, uint8_t *out_len, const uint8_t *in, unsigned in_len, void *arg) -> int { auto state = reinterpret_cast *>(arg); if (SSL_get_pending_cipher(ssl) != nullptr && SSL_version(ssl) == state->first) { state->second = true; } return SSL_TLSEXT_ERR_NOACK; }, &callback_state); ASSERT_TRUE(Connect()); ASSERT_TRUE(callback_state.second); } TEST_P(SSLVersionTest, SSLClearSessionResumption) { // Skip this for TLS 1.3. TLS 1.3's ticket mechanism is incompatible with this // API pattern. if (version() == TLS1_3_VERSION) { return; } shed_handshake_config_ = false; ASSERT_TRUE(Connect()); EXPECT_FALSE(SSL_session_reused(client_.get())); EXPECT_FALSE(SSL_session_reused(server_.get())); // Reset everything. ASSERT_TRUE(SSL_clear(client_.get())); ASSERT_TRUE(SSL_clear(server_.get())); // Attempt to connect a second time. ASSERT_TRUE(CompleteHandshakes(client_.get(), server_.get())); // |SSL_clear| should implicitly offer the previous session to the server. EXPECT_TRUE(SSL_session_reused(client_.get())); EXPECT_TRUE(SSL_session_reused(server_.get())); } TEST_P(SSLVersionTest, SSLClearFailsWithShedding) { shed_handshake_config_ = false; ASSERT_TRUE(Connect()); ASSERT_TRUE(CompleteHandshakes(client_.get(), server_.get())); // Reset everything. ASSERT_TRUE(SSL_clear(client_.get())); ASSERT_TRUE(SSL_clear(server_.get())); // Now enable shedding, and connect a second time. shed_handshake_config_ = true; ASSERT_TRUE(Connect()); ASSERT_TRUE(CompleteHandshakes(client_.get(), server_.get())); // |SSL_clear| should now fail. ASSERT_FALSE(SSL_clear(client_.get())); ASSERT_FALSE(SSL_clear(server_.get())); } static bool ChainsEqual(STACK_OF(X509) * chain, const std::vector &expected) { if (sk_X509_num(chain) != expected.size()) { return false; } for (size_t i = 0; i < expected.size(); i++) { if (X509_cmp(sk_X509_value(chain, i), expected[i]) != 0) { return false; } } return true; } TEST_P(SSLVersionTest, AutoChain) { cert_ = GetChainTestCertificate(); ASSERT_TRUE(cert_); key_ = GetChainTestKey(); ASSERT_TRUE(key_); bssl::UniquePtr intermediate = GetChainTestIntermediate(); ASSERT_TRUE(intermediate); ASSERT_TRUE(UseCertAndKey(client_ctx_.get())); ASSERT_TRUE(UseCertAndKey(server_ctx_.get())); // Configure both client and server to accept any certificate. Add // |intermediate| to the cert store. ASSERT_TRUE(X509_STORE_add_cert(SSL_CTX_get_cert_store(client_ctx_.get()), intermediate.get())); ASSERT_TRUE(X509_STORE_add_cert(SSL_CTX_get_cert_store(server_ctx_.get()), intermediate.get())); SSL_CTX_set_verify(client_ctx_.get(), SSL_VERIFY_PEER | SSL_VERIFY_FAIL_IF_NO_PEER_CERT, nullptr); SSL_CTX_set_verify(server_ctx_.get(), SSL_VERIFY_PEER | SSL_VERIFY_FAIL_IF_NO_PEER_CERT, nullptr); SSL_CTX_set_cert_verify_callback(client_ctx_.get(), VerifySucceed, NULL); SSL_CTX_set_cert_verify_callback(server_ctx_.get(), VerifySucceed, NULL); // By default, the client and server should each only send the leaf. ASSERT_TRUE(Connect()); EXPECT_TRUE( ChainsEqual(SSL_get_peer_full_cert_chain(client_.get()), {cert_.get()})); EXPECT_TRUE( ChainsEqual(SSL_get_peer_full_cert_chain(server_.get()), {cert_.get()})); // If auto-chaining is enabled, then the intermediate is sent. SSL_CTX_clear_mode(client_ctx_.get(), SSL_MODE_NO_AUTO_CHAIN); SSL_CTX_clear_mode(server_ctx_.get(), SSL_MODE_NO_AUTO_CHAIN); ASSERT_TRUE(Connect()); EXPECT_TRUE(ChainsEqual(SSL_get_peer_full_cert_chain(client_.get()), {cert_.get(), intermediate.get()})); EXPECT_TRUE(ChainsEqual(SSL_get_peer_full_cert_chain(server_.get()), {cert_.get(), intermediate.get()})); // Auto-chaining does not override explicitly-configured intermediates. ASSERT_TRUE(SSL_CTX_add1_chain_cert(client_ctx_.get(), cert_.get())); ASSERT_TRUE(SSL_CTX_add1_chain_cert(server_ctx_.get(), cert_.get())); ASSERT_TRUE(Connect()); EXPECT_TRUE(ChainsEqual(SSL_get_peer_full_cert_chain(client_.get()), {cert_.get(), cert_.get()})); EXPECT_TRUE(ChainsEqual(SSL_get_peer_full_cert_chain(server_.get()), {cert_.get(), cert_.get()})); } static bool ExpectBadWriteRetry() { int err = ERR_get_error(); if (ERR_GET_LIB(err) != ERR_LIB_SSL || ERR_GET_REASON(err) != SSL_R_BAD_WRITE_RETRY) { char buf[ERR_ERROR_STRING_BUF_LEN]; ERR_error_string_n(err, buf, sizeof(buf)); fprintf(stderr, "Wanted SSL_R_BAD_WRITE_RETRY, got: %s.\n", buf); return false; } if (ERR_peek_error() != 0) { fprintf(stderr, "Unexpected error following SSL_R_BAD_WRITE_RETRY.\n"); return false; } return true; } TEST_P(SSLVersionTest, SSLWriteRetry) { if (is_dtls()) { return; } for (bool enable_partial_write : {false, true}) { SCOPED_TRACE(enable_partial_write); // Connect a client and server. ASSERT_TRUE(UseCertAndKey(client_ctx_.get())); ASSERT_TRUE(Connect()); if (enable_partial_write) { SSL_set_mode(client_.get(), SSL_MODE_ENABLE_PARTIAL_WRITE); } // Write without reading until the buffer is full and we have an unfinished // write. Keep a count so we may reread it again later. "hello!" will be // written in two chunks, "hello" and "!". char data[] = "hello!"; static const int kChunkLen = 5; // The length of "hello". unsigned count = 0; for (;;) { int ret = SSL_write(client_.get(), data, kChunkLen); if (ret <= 0) { ASSERT_EQ(SSL_get_error(client_.get(), ret), SSL_ERROR_WANT_WRITE); break; } ASSERT_EQ(ret, 5); count++; } // Retrying with the same parameters is legal. ASSERT_EQ( SSL_get_error(client_.get(), SSL_write(client_.get(), data, kChunkLen)), SSL_ERROR_WANT_WRITE); // Retrying with the same buffer but shorter length is not legal. ASSERT_EQ(SSL_get_error(client_.get(), SSL_write(client_.get(), data, kChunkLen - 1)), SSL_ERROR_SSL); ASSERT_TRUE(ExpectBadWriteRetry()); // Retrying with a different buffer pointer is not legal. char data2[] = "hello"; ASSERT_EQ(SSL_get_error(client_.get(), SSL_write(client_.get(), data2, kChunkLen)), SSL_ERROR_SSL); ASSERT_TRUE(ExpectBadWriteRetry()); // With |SSL_MODE_ACCEPT_MOVING_WRITE_BUFFER|, the buffer may move. SSL_set_mode(client_.get(), SSL_MODE_ACCEPT_MOVING_WRITE_BUFFER); ASSERT_EQ(SSL_get_error(client_.get(), SSL_write(client_.get(), data2, kChunkLen)), SSL_ERROR_WANT_WRITE); // |SSL_MODE_ACCEPT_MOVING_WRITE_BUFFER| does not disable length checks. ASSERT_EQ(SSL_get_error(client_.get(), SSL_write(client_.get(), data2, kChunkLen - 1)), SSL_ERROR_SSL); ASSERT_TRUE(ExpectBadWriteRetry()); // Retrying with a larger buffer is legal. ASSERT_EQ(SSL_get_error(client_.get(), SSL_write(client_.get(), data, kChunkLen + 1)), SSL_ERROR_WANT_WRITE); // Drain the buffer. char buf[20]; for (unsigned i = 0; i < count; i++) { ASSERT_EQ(SSL_read(server_.get(), buf, sizeof(buf)), kChunkLen); ASSERT_EQ(OPENSSL_memcmp(buf, "hello", kChunkLen), 0); } // Now that there is space, a retry with a larger buffer should flush the // pending record, skip over that many bytes of input (on assumption they // are the same), and write the remainder. If SSL_MODE_ENABLE_PARTIAL_WRITE // is set, this will complete in two steps. char data3[] = "_____!"; if (enable_partial_write) { ASSERT_EQ(SSL_write(client_.get(), data3, kChunkLen + 1), kChunkLen); ASSERT_EQ(SSL_write(client_.get(), data3 + kChunkLen, 1), 1); } else { ASSERT_EQ(SSL_write(client_.get(), data3, kChunkLen + 1), kChunkLen + 1); } // Check the last write was correct. The data will be spread over two // records, so SSL_read returns twice. ASSERT_EQ(SSL_read(server_.get(), buf, sizeof(buf)), kChunkLen); ASSERT_EQ(OPENSSL_memcmp(buf, "hello", kChunkLen), 0); ASSERT_EQ(SSL_read(server_.get(), buf, sizeof(buf)), 1); ASSERT_EQ(buf[0], '!'); } } TEST_P(SSLVersionTest, RecordCallback) { for (bool test_server : {true, false}) { SCOPED_TRACE(test_server); ResetContexts(); bool read_seen = false; bool write_seen = false; auto cb = [&](int is_write, int cb_version, int cb_type, const void *buf, size_t len, SSL *ssl) { if (cb_type != SSL3_RT_HEADER) { return; } // The callback does not report a version for records. EXPECT_EQ(0, cb_version); if (is_write) { write_seen = true; } else { read_seen = true; } // Sanity-check that the record header is plausible. CBS cbs; CBS_init(&cbs, reinterpret_cast(buf), len); uint8_t type; uint16_t record_version, length; ASSERT_TRUE(CBS_get_u8(&cbs, &type)); ASSERT_TRUE(CBS_get_u16(&cbs, &record_version)); EXPECT_EQ(record_version & 0xff00, version() & 0xff00); if (is_dtls()) { uint16_t epoch; ASSERT_TRUE(CBS_get_u16(&cbs, &epoch)); EXPECT_TRUE(epoch == 0 || epoch == 1) << "Invalid epoch: " << epoch; ASSERT_TRUE(CBS_skip(&cbs, 6)); } ASSERT_TRUE(CBS_get_u16(&cbs, &length)); EXPECT_EQ(0u, CBS_len(&cbs)); }; using CallbackType = decltype(cb); SSL_CTX *ctx = test_server ? server_ctx_.get() : client_ctx_.get(); SSL_CTX_set_msg_callback( ctx, [](int is_write, int cb_version, int cb_type, const void *buf, size_t len, SSL *ssl, void *arg) { CallbackType *cb_ptr = reinterpret_cast(arg); (*cb_ptr)(is_write, cb_version, cb_type, buf, len, ssl); }); SSL_CTX_set_msg_callback_arg(ctx, &cb); ASSERT_TRUE(Connect()); EXPECT_TRUE(read_seen); EXPECT_TRUE(write_seen); } } TEST_P(SSLVersionTest, GetServerName) { ClientConfig config; config.servername = "host1"; SSL_CTX_set_tlsext_servername_callback( server_ctx_.get(), [](SSL *ssl, int *out_alert, void *arg) -> int { // During the handshake, |SSL_get_servername| must match |config|. ClientConfig *config_p = reinterpret_cast(arg); EXPECT_STREQ(config_p->servername.c_str(), SSL_get_servername(ssl, TLSEXT_NAMETYPE_host_name)); return SSL_TLSEXT_ERR_OK; }); SSL_CTX_set_tlsext_servername_arg(server_ctx_.get(), &config); ASSERT_TRUE(Connect(config)); // After the handshake, it must also be available. EXPECT_STREQ(config.servername.c_str(), SSL_get_servername(server_.get(), TLSEXT_NAMETYPE_host_name)); // Establish a session under host1. SSL_CTX_set_session_cache_mode(client_ctx_.get(), SSL_SESS_CACHE_BOTH); SSL_CTX_set_session_cache_mode(server_ctx_.get(), SSL_SESS_CACHE_BOTH); bssl::UniquePtr session = CreateClientSession(client_ctx_.get(), server_ctx_.get(), config); // If the client resumes a session with a different name, |SSL_get_servername| // must return the new name. ASSERT_TRUE(session); config.session = session.get(); config.servername = "host2"; ASSERT_TRUE(Connect(config)); EXPECT_STREQ(config.servername.c_str(), SSL_get_servername(server_.get(), TLSEXT_NAMETYPE_host_name)); } // Test that session cache mode bits are honored in the client session callback. TEST_P(SSLVersionTest, ClientSessionCacheMode) { SSL_CTX_set_session_cache_mode(client_ctx_.get(), SSL_SESS_CACHE_OFF); EXPECT_FALSE(CreateClientSession(client_ctx_.get(), server_ctx_.get())); SSL_CTX_set_session_cache_mode(client_ctx_.get(), SSL_SESS_CACHE_CLIENT); EXPECT_TRUE(CreateClientSession(client_ctx_.get(), server_ctx_.get())); SSL_CTX_set_session_cache_mode(client_ctx_.get(), SSL_SESS_CACHE_SERVER); EXPECT_FALSE(CreateClientSession(client_ctx_.get(), server_ctx_.get())); } // Test that all versions survive tiny write buffers. In particular, TLS 1.3 // NewSessionTickets are written post-handshake. Servers that block // |SSL_do_handshake| on writing them will deadlock if clients are not draining // the buffer. Test that we do not do this. TEST_P(SSLVersionTest, SmallBuffer) { // DTLS is a datagram protocol and requires packet-sized buffers. if (is_dtls()) { return; } // Test both flushing NewSessionTickets with a zero-sized write and // non-zero-sized write. for (bool use_zero_write : {false, true}) { SCOPED_TRACE(use_zero_write); g_last_session = nullptr; SSL_CTX_set_session_cache_mode(client_ctx_.get(), SSL_SESS_CACHE_BOTH); SSL_CTX_sess_set_new_cb(client_ctx_.get(), SaveLastSession); bssl::UniquePtr client(SSL_new(client_ctx_.get())), server(SSL_new(server_ctx_.get())); ASSERT_TRUE(client); ASSERT_TRUE(server); SSL_set_connect_state(client.get()); SSL_set_accept_state(server.get()); // Use a tiny buffer. BIO *bio1, *bio2; ASSERT_TRUE(BIO_new_bio_pair(&bio1, 1, &bio2, 1)); // SSL_set_bio takes ownership. SSL_set_bio(client.get(), bio1, bio1); SSL_set_bio(server.get(), bio2, bio2); ASSERT_TRUE(CompleteHandshakes(client.get(), server.get())); if (version() >= TLS1_3_VERSION) { // The post-handshake ticket should not have been processed yet. EXPECT_FALSE(g_last_session); } if (use_zero_write) { ASSERT_TRUE(FlushNewSessionTickets(client.get(), server.get())); EXPECT_TRUE(g_last_session); } // Send some data from server to client. If |use_zero_write| is false, this // will also flush the NewSessionTickets. static const char kMessage[] = "hello world"; char buf[sizeof(kMessage)]; for (;;) { int server_ret = SSL_write(server.get(), kMessage, sizeof(kMessage)); int server_err = SSL_get_error(server.get(), server_ret); int client_ret = SSL_read(client.get(), buf, sizeof(buf)); int client_err = SSL_get_error(client.get(), client_ret); // The server will write a single record, so every iteration should see // |SSL_ERROR_WANT_WRITE| and |SSL_ERROR_WANT_READ|, until the final // iteration, where both will complete. if (server_ret > 0) { EXPECT_EQ(server_ret, static_cast(sizeof(kMessage))); EXPECT_EQ(client_ret, static_cast(sizeof(kMessage))); EXPECT_EQ(Bytes(buf), Bytes(kMessage)); break; } ASSERT_EQ(server_ret, -1); ASSERT_EQ(server_err, SSL_ERROR_WANT_WRITE); ASSERT_EQ(client_ret, -1); ASSERT_EQ(client_err, SSL_ERROR_WANT_READ); } // The NewSessionTickets should have been flushed and processed. EXPECT_TRUE(g_last_session); } } TEST(SSLTest, AddChainCertHack) { // Ensure that we don't accidently break the hack that we have in place to // keep curl and serf happy when they use an |X509| even after transfering // ownership. bssl::UniquePtr ctx(SSL_CTX_new(TLS_method())); ASSERT_TRUE(ctx); X509 *cert = GetTestCertificate().release(); ASSERT_TRUE(cert); SSL_CTX_add0_chain_cert(ctx.get(), cert); // This should not trigger a use-after-free. X509_cmp(cert, cert); } TEST(SSLTest, GetCertificate) { bssl::UniquePtr ctx(SSL_CTX_new(TLS_method())); ASSERT_TRUE(ctx); bssl::UniquePtr cert = GetTestCertificate(); ASSERT_TRUE(cert); ASSERT_TRUE(SSL_CTX_use_certificate(ctx.get(), cert.get())); bssl::UniquePtr ssl(SSL_new(ctx.get())); ASSERT_TRUE(ssl); X509 *cert2 = SSL_CTX_get0_certificate(ctx.get()); ASSERT_TRUE(cert2); X509 *cert3 = SSL_get_certificate(ssl.get()); ASSERT_TRUE(cert3); // The old and new certificates must be identical. EXPECT_EQ(0, X509_cmp(cert.get(), cert2)); EXPECT_EQ(0, X509_cmp(cert.get(), cert3)); uint8_t *der = nullptr; long der_len = i2d_X509(cert.get(), &der); ASSERT_LT(0, der_len); bssl::UniquePtr free_der(der); uint8_t *der2 = nullptr; long der2_len = i2d_X509(cert2, &der2); ASSERT_LT(0, der2_len); bssl::UniquePtr free_der2(der2); uint8_t *der3 = nullptr; long der3_len = i2d_X509(cert3, &der3); ASSERT_LT(0, der3_len); bssl::UniquePtr free_der3(der3); // They must also encode identically. EXPECT_EQ(Bytes(der, der_len), Bytes(der2, der2_len)); EXPECT_EQ(Bytes(der, der_len), Bytes(der3, der3_len)); } TEST(SSLTest, SetChainAndKeyMismatch) { bssl::UniquePtr ctx(SSL_CTX_new(TLS_with_buffers_method())); ASSERT_TRUE(ctx); bssl::UniquePtr key = GetTestKey(); ASSERT_TRUE(key); bssl::UniquePtr leaf = GetChainTestCertificateBuffer(); ASSERT_TRUE(leaf); std::vector chain = { leaf.get(), }; // Should fail because |GetTestKey| doesn't match the chain-test certificate. ASSERT_FALSE(SSL_CTX_set_chain_and_key(ctx.get(), &chain[0], chain.size(), key.get(), nullptr)); ERR_clear_error(); } TEST(SSLTest, SetChainAndKey) { bssl::UniquePtr client_ctx(SSL_CTX_new(TLS_with_buffers_method())); ASSERT_TRUE(client_ctx); bssl::UniquePtr server_ctx(SSL_CTX_new(TLS_with_buffers_method())); ASSERT_TRUE(server_ctx); bssl::UniquePtr key = GetChainTestKey(); ASSERT_TRUE(key); bssl::UniquePtr leaf = GetChainTestCertificateBuffer(); ASSERT_TRUE(leaf); bssl::UniquePtr intermediate = GetChainTestIntermediateBuffer(); ASSERT_TRUE(intermediate); std::vector chain = { leaf.get(), intermediate.get(), }; ASSERT_TRUE(SSL_CTX_set_chain_and_key(server_ctx.get(), &chain[0], chain.size(), key.get(), nullptr)); SSL_CTX_set_custom_verify( client_ctx.get(), SSL_VERIFY_PEER, [](SSL *ssl, uint8_t *out_alert) -> ssl_verify_result_t { return ssl_verify_ok; }); bssl::UniquePtr client, server; ASSERT_TRUE(ConnectClientAndServer(&client, &server, client_ctx.get(), server_ctx.get())); } TEST(SSLTest, BuffersFailWithoutCustomVerify) { bssl::UniquePtr client_ctx(SSL_CTX_new(TLS_with_buffers_method())); ASSERT_TRUE(client_ctx); bssl::UniquePtr server_ctx(SSL_CTX_new(TLS_with_buffers_method())); ASSERT_TRUE(server_ctx); bssl::UniquePtr key = GetChainTestKey(); ASSERT_TRUE(key); bssl::UniquePtr leaf = GetChainTestCertificateBuffer(); ASSERT_TRUE(leaf); std::vector chain = { leaf.get() }; ASSERT_TRUE(SSL_CTX_set_chain_and_key(server_ctx.get(), &chain[0], chain.size(), key.get(), nullptr)); // Without SSL_CTX_set_custom_verify(), i.e. with everything in the default // configuration, certificate verification should fail. bssl::UniquePtr client, server; ASSERT_FALSE(ConnectClientAndServer(&client, &server, client_ctx.get(), server_ctx.get())); // Whereas with a verifier, the connection should succeed. SSL_CTX_set_custom_verify( client_ctx.get(), SSL_VERIFY_PEER, [](SSL *ssl, uint8_t *out_alert) -> ssl_verify_result_t { return ssl_verify_ok; }); ASSERT_TRUE(ConnectClientAndServer(&client, &server, client_ctx.get(), server_ctx.get())); } TEST(SSLTest, CustomVerify) { bssl::UniquePtr client_ctx(SSL_CTX_new(TLS_with_buffers_method())); ASSERT_TRUE(client_ctx); bssl::UniquePtr server_ctx(SSL_CTX_new(TLS_with_buffers_method())); ASSERT_TRUE(server_ctx); bssl::UniquePtr key = GetChainTestKey(); ASSERT_TRUE(key); bssl::UniquePtr leaf = GetChainTestCertificateBuffer(); ASSERT_TRUE(leaf); std::vector chain = { leaf.get() }; ASSERT_TRUE(SSL_CTX_set_chain_and_key(server_ctx.get(), &chain[0], chain.size(), key.get(), nullptr)); SSL_CTX_set_custom_verify( client_ctx.get(), SSL_VERIFY_PEER, [](SSL *ssl, uint8_t *out_alert) -> ssl_verify_result_t { return ssl_verify_ok; }); bssl::UniquePtr client, server; ASSERT_TRUE(ConnectClientAndServer(&client, &server, client_ctx.get(), server_ctx.get())); // With SSL_VERIFY_PEER, ssl_verify_invalid should result in a dropped // connection. SSL_CTX_set_custom_verify( client_ctx.get(), SSL_VERIFY_PEER, [](SSL *ssl, uint8_t *out_alert) -> ssl_verify_result_t { return ssl_verify_invalid; }); ASSERT_FALSE(ConnectClientAndServer(&client, &server, client_ctx.get(), server_ctx.get())); // But with SSL_VERIFY_NONE, ssl_verify_invalid should not cause a dropped // connection. SSL_CTX_set_custom_verify( client_ctx.get(), SSL_VERIFY_NONE, [](SSL *ssl, uint8_t *out_alert) -> ssl_verify_result_t { return ssl_verify_invalid; }); ASSERT_TRUE(ConnectClientAndServer(&client, &server, client_ctx.get(), server_ctx.get())); } TEST(SSLTest, ClientCABuffers) { bssl::UniquePtr client_ctx(SSL_CTX_new(TLS_with_buffers_method())); ASSERT_TRUE(client_ctx); bssl::UniquePtr server_ctx(SSL_CTX_new(TLS_with_buffers_method())); ASSERT_TRUE(server_ctx); bssl::UniquePtr key = GetChainTestKey(); ASSERT_TRUE(key); bssl::UniquePtr leaf = GetChainTestCertificateBuffer(); ASSERT_TRUE(leaf); bssl::UniquePtr intermediate = GetChainTestIntermediateBuffer(); ASSERT_TRUE(intermediate); std::vector chain = { leaf.get(), intermediate.get(), }; ASSERT_TRUE(SSL_CTX_set_chain_and_key(server_ctx.get(), &chain[0], chain.size(), key.get(), nullptr)); bssl::UniquePtr ca_name( CRYPTO_BUFFER_new(kTestName, sizeof(kTestName), nullptr)); ASSERT_TRUE(ca_name); bssl::UniquePtr ca_names( sk_CRYPTO_BUFFER_new_null()); ASSERT_TRUE(ca_names); ASSERT_TRUE(PushToStack(ca_names.get(), std::move(ca_name))); SSL_CTX_set0_client_CAs(server_ctx.get(), ca_names.release()); // Configure client and server to accept all certificates. SSL_CTX_set_custom_verify( client_ctx.get(), SSL_VERIFY_PEER, [](SSL *ssl, uint8_t *out_alert) -> ssl_verify_result_t { return ssl_verify_ok; }); SSL_CTX_set_custom_verify( server_ctx.get(), SSL_VERIFY_PEER, [](SSL *ssl, uint8_t *out_alert) -> ssl_verify_result_t { return ssl_verify_ok; }); bool cert_cb_called = false; SSL_CTX_set_cert_cb( client_ctx.get(), [](SSL *ssl, void *arg) -> int { const STACK_OF(CRYPTO_BUFFER) *peer_names = SSL_get0_server_requested_CAs(ssl); EXPECT_EQ(1u, sk_CRYPTO_BUFFER_num(peer_names)); CRYPTO_BUFFER *peer_name = sk_CRYPTO_BUFFER_value(peer_names, 0); EXPECT_EQ(Bytes(kTestName), Bytes(CRYPTO_BUFFER_data(peer_name), CRYPTO_BUFFER_len(peer_name))); *reinterpret_cast(arg) = true; return 1; }, &cert_cb_called); bssl::UniquePtr client, server; ASSERT_TRUE(ConnectClientAndServer(&client, &server, client_ctx.get(), server_ctx.get())); EXPECT_TRUE(cert_cb_called); } // Configuring the empty cipher list, though an error, should still modify the // configuration. TEST(SSLTest, EmptyCipherList) { bssl::UniquePtr ctx(SSL_CTX_new(TLS_method())); ASSERT_TRUE(ctx); // Initially, the cipher list is not empty. EXPECT_NE(0u, sk_SSL_CIPHER_num(SSL_CTX_get_ciphers(ctx.get()))); // Configuring the empty cipher list fails. EXPECT_FALSE(SSL_CTX_set_cipher_list(ctx.get(), "")); ERR_clear_error(); // But the cipher list is still updated to empty. EXPECT_EQ(0u, sk_SSL_CIPHER_num(SSL_CTX_get_ciphers(ctx.get()))); } // ssl_test_ticket_aead_failure_mode enumerates the possible ways in which the // test |SSL_TICKET_AEAD_METHOD| can fail. enum ssl_test_ticket_aead_failure_mode { ssl_test_ticket_aead_ok = 0, ssl_test_ticket_aead_seal_fail, ssl_test_ticket_aead_open_soft_fail, ssl_test_ticket_aead_open_hard_fail, }; struct ssl_test_ticket_aead_state { unsigned retry_count; ssl_test_ticket_aead_failure_mode failure_mode; }; static int ssl_test_ticket_aead_ex_index_dup(CRYPTO_EX_DATA *to, const CRYPTO_EX_DATA *from, void **from_d, int index, long argl, void *argp) { abort(); } static void ssl_test_ticket_aead_ex_index_free(void *parent, void *ptr, CRYPTO_EX_DATA *ad, int index, long argl, void *argp) { auto state = reinterpret_cast(ptr); if (state == nullptr) { return; } OPENSSL_free(state); } static CRYPTO_once_t g_ssl_test_ticket_aead_ex_index_once = CRYPTO_ONCE_INIT; static int g_ssl_test_ticket_aead_ex_index; static int ssl_test_ticket_aead_get_ex_index() { CRYPTO_once(&g_ssl_test_ticket_aead_ex_index_once, [] { g_ssl_test_ticket_aead_ex_index = SSL_get_ex_new_index( 0, nullptr, nullptr, ssl_test_ticket_aead_ex_index_dup, ssl_test_ticket_aead_ex_index_free); }); return g_ssl_test_ticket_aead_ex_index; } static size_t ssl_test_ticket_aead_max_overhead(SSL *ssl) { return 1; } static int ssl_test_ticket_aead_seal(SSL *ssl, uint8_t *out, size_t *out_len, size_t max_out_len, const uint8_t *in, size_t in_len) { auto state = reinterpret_cast( SSL_get_ex_data(ssl, ssl_test_ticket_aead_get_ex_index())); if (state->failure_mode == ssl_test_ticket_aead_seal_fail || max_out_len < in_len + 1) { return 0; } OPENSSL_memmove(out, in, in_len); out[in_len] = 0xff; *out_len = in_len + 1; return 1; } static ssl_ticket_aead_result_t ssl_test_ticket_aead_open( SSL *ssl, uint8_t *out, size_t *out_len, size_t max_out_len, const uint8_t *in, size_t in_len) { auto state = reinterpret_cast( SSL_get_ex_data(ssl, ssl_test_ticket_aead_get_ex_index())); if (state->retry_count > 0) { state->retry_count--; return ssl_ticket_aead_retry; } switch (state->failure_mode) { case ssl_test_ticket_aead_ok: break; case ssl_test_ticket_aead_seal_fail: // If |seal| failed then there shouldn't be any ticket to try and // decrypt. abort(); break; case ssl_test_ticket_aead_open_soft_fail: return ssl_ticket_aead_ignore_ticket; case ssl_test_ticket_aead_open_hard_fail: return ssl_ticket_aead_error; } if (in_len == 0 || in[in_len - 1] != 0xff) { return ssl_ticket_aead_ignore_ticket; } if (max_out_len < in_len - 1) { return ssl_ticket_aead_error; } OPENSSL_memmove(out, in, in_len - 1); *out_len = in_len - 1; return ssl_ticket_aead_success; } static const SSL_TICKET_AEAD_METHOD kSSLTestTicketMethod = { ssl_test_ticket_aead_max_overhead, ssl_test_ticket_aead_seal, ssl_test_ticket_aead_open, }; static void ConnectClientAndServerWithTicketMethod( bssl::UniquePtr *out_client, bssl::UniquePtr *out_server, SSL_CTX *client_ctx, SSL_CTX *server_ctx, unsigned retry_count, ssl_test_ticket_aead_failure_mode failure_mode, SSL_SESSION *session) { bssl::UniquePtr client(SSL_new(client_ctx)), server(SSL_new(server_ctx)); ASSERT_TRUE(client); ASSERT_TRUE(server); SSL_set_connect_state(client.get()); SSL_set_accept_state(server.get()); auto state = reinterpret_cast( OPENSSL_malloc(sizeof(ssl_test_ticket_aead_state))); ASSERT_TRUE(state); OPENSSL_memset(state, 0, sizeof(ssl_test_ticket_aead_state)); state->retry_count = retry_count; state->failure_mode = failure_mode; ASSERT_TRUE(SSL_set_ex_data(server.get(), ssl_test_ticket_aead_get_ex_index(), state)); SSL_set_session(client.get(), session); BIO *bio1, *bio2; ASSERT_TRUE(BIO_new_bio_pair(&bio1, 0, &bio2, 0)); // SSL_set_bio takes ownership. SSL_set_bio(client.get(), bio1, bio1); SSL_set_bio(server.get(), bio2, bio2); if (CompleteHandshakes(client.get(), server.get())) { *out_client = std::move(client); *out_server = std::move(server); } else { out_client->reset(); out_server->reset(); } } using TicketAEADMethodParam = testing::tuple; class TicketAEADMethodTest : public ::testing::TestWithParam {}; TEST_P(TicketAEADMethodTest, Resume) { bssl::UniquePtr cert = GetTestCertificate(); ASSERT_TRUE(cert); bssl::UniquePtr key = GetTestKey(); ASSERT_TRUE(key); bssl::UniquePtr server_ctx(SSL_CTX_new(TLS_method())); ASSERT_TRUE(server_ctx); bssl::UniquePtr client_ctx(SSL_CTX_new(TLS_method())); ASSERT_TRUE(client_ctx); const uint16_t version = testing::get<0>(GetParam()); const unsigned retry_count = testing::get<1>(GetParam()); const ssl_test_ticket_aead_failure_mode failure_mode = testing::get<2>(GetParam()); ASSERT_TRUE(SSL_CTX_use_certificate(server_ctx.get(), cert.get())); ASSERT_TRUE(SSL_CTX_use_PrivateKey(server_ctx.get(), key.get())); ASSERT_TRUE(SSL_CTX_set_min_proto_version(client_ctx.get(), version)); ASSERT_TRUE(SSL_CTX_set_max_proto_version(client_ctx.get(), version)); ASSERT_TRUE(SSL_CTX_set_min_proto_version(server_ctx.get(), version)); ASSERT_TRUE(SSL_CTX_set_max_proto_version(server_ctx.get(), version)); SSL_CTX_set_session_cache_mode(client_ctx.get(), SSL_SESS_CACHE_BOTH); SSL_CTX_set_session_cache_mode(server_ctx.get(), SSL_SESS_CACHE_BOTH); SSL_CTX_set_current_time_cb(client_ctx.get(), FrozenTimeCallback); SSL_CTX_set_current_time_cb(server_ctx.get(), FrozenTimeCallback); SSL_CTX_sess_set_new_cb(client_ctx.get(), SaveLastSession); SSL_CTX_set_ticket_aead_method(server_ctx.get(), &kSSLTestTicketMethod); bssl::UniquePtr client, server; ConnectClientAndServerWithTicketMethod(&client, &server, client_ctx.get(), server_ctx.get(), retry_count, failure_mode, nullptr); switch (failure_mode) { case ssl_test_ticket_aead_ok: case ssl_test_ticket_aead_open_hard_fail: case ssl_test_ticket_aead_open_soft_fail: ASSERT_TRUE(client); break; case ssl_test_ticket_aead_seal_fail: EXPECT_FALSE(client); return; } EXPECT_FALSE(SSL_session_reused(client.get())); EXPECT_FALSE(SSL_session_reused(server.get())); ASSERT_TRUE(FlushNewSessionTickets(client.get(), server.get())); bssl::UniquePtr session = std::move(g_last_session); ConnectClientAndServerWithTicketMethod(&client, &server, client_ctx.get(), server_ctx.get(), retry_count, failure_mode, session.get()); switch (failure_mode) { case ssl_test_ticket_aead_ok: ASSERT_TRUE(client); EXPECT_TRUE(SSL_session_reused(client.get())); EXPECT_TRUE(SSL_session_reused(server.get())); break; case ssl_test_ticket_aead_seal_fail: abort(); break; case ssl_test_ticket_aead_open_hard_fail: EXPECT_FALSE(client); break; case ssl_test_ticket_aead_open_soft_fail: ASSERT_TRUE(client); EXPECT_FALSE(SSL_session_reused(client.get())); EXPECT_FALSE(SSL_session_reused(server.get())); } } std::string TicketAEADMethodParamToString( const testing::TestParamInfo ¶ms) { std::string ret = GetVersionName(std::get<0>(params.param)); // GTest only allows alphanumeric characters and '_' in the parameter // string. Additionally filter out the 'v' to get "TLS13" over "TLSv13". for (auto it = ret.begin(); it != ret.end();) { if (*it == '.' || *it == 'v') { it = ret.erase(it); } else { ++it; } } char retry_count[256]; snprintf(retry_count, sizeof(retry_count), "%d", std::get<1>(params.param)); ret += "_"; ret += retry_count; ret += "Retries_"; switch (std::get<2>(params.param)) { case ssl_test_ticket_aead_ok: ret += "OK"; break; case ssl_test_ticket_aead_seal_fail: ret += "SealFail"; break; case ssl_test_ticket_aead_open_soft_fail: ret += "OpenSoftFail"; break; case ssl_test_ticket_aead_open_hard_fail: ret += "OpenHardFail"; break; } return ret; } INSTANTIATE_TEST_SUITE_P( TicketAEADMethodTests, TicketAEADMethodTest, testing::Combine(testing::Values(TLS1_2_VERSION, TLS1_3_VERSION), testing::Values(0, 1, 2), testing::Values(ssl_test_ticket_aead_ok, ssl_test_ticket_aead_seal_fail, ssl_test_ticket_aead_open_soft_fail, ssl_test_ticket_aead_open_hard_fail)), TicketAEADMethodParamToString); TEST(SSLTest, SelectNextProto) { uint8_t *result; uint8_t result_len; // If there is an overlap, it should be returned. EXPECT_EQ(OPENSSL_NPN_NEGOTIATED, SSL_select_next_proto(&result, &result_len, (const uint8_t *)"\1a\2bb\3ccc", 9, (const uint8_t *)"\1x\1y\1a\1z", 8)); EXPECT_EQ(Bytes("a"), Bytes(result, result_len)); EXPECT_EQ(OPENSSL_NPN_NEGOTIATED, SSL_select_next_proto(&result, &result_len, (const uint8_t *)"\1a\2bb\3ccc", 9, (const uint8_t *)"\1x\1y\2bb\1z", 9)); EXPECT_EQ(Bytes("bb"), Bytes(result, result_len)); EXPECT_EQ(OPENSSL_NPN_NEGOTIATED, SSL_select_next_proto(&result, &result_len, (const uint8_t *)"\1a\2bb\3ccc", 9, (const uint8_t *)"\1x\1y\3ccc\1z", 10)); EXPECT_EQ(Bytes("ccc"), Bytes(result, result_len)); // Peer preference order takes precedence over local. EXPECT_EQ(OPENSSL_NPN_NEGOTIATED, SSL_select_next_proto(&result, &result_len, (const uint8_t *)"\1a\2bb\3ccc", 9, (const uint8_t *)"\3ccc\2bb\1a", 9)); EXPECT_EQ(Bytes("a"), Bytes(result, result_len)); // If there is no overlap, return the first local protocol. EXPECT_EQ(OPENSSL_NPN_NO_OVERLAP, SSL_select_next_proto(&result, &result_len, (const uint8_t *)"\1a\2bb\3ccc", 9, (const uint8_t *)"\1x\2yy\3zzz", 9)); EXPECT_EQ(Bytes("x"), Bytes(result, result_len)); EXPECT_EQ(OPENSSL_NPN_NO_OVERLAP, SSL_select_next_proto(&result, &result_len, nullptr, 0, (const uint8_t *)"\1x\2yy\3zzz", 9)); EXPECT_EQ(Bytes("x"), Bytes(result, result_len)); } TEST(SSLTest, SealRecord) { bssl::UniquePtr client_ctx(SSL_CTX_new(TLS_method())), server_ctx(SSL_CTX_new(TLS_method())); ASSERT_TRUE(client_ctx); ASSERT_TRUE(server_ctx); bssl::UniquePtr cert = GetTestCertificate(); bssl::UniquePtr key = GetTestKey(); ASSERT_TRUE(cert); ASSERT_TRUE(key); ASSERT_TRUE(SSL_CTX_use_certificate(server_ctx.get(), cert.get())); ASSERT_TRUE(SSL_CTX_use_PrivateKey(server_ctx.get(), key.get())); bssl::UniquePtr client, server; ASSERT_TRUE(ConnectClientAndServer(&client, &server, client_ctx.get(), server_ctx.get())); const std::vector record = {1, 2, 3, 4, 5}; std::vector prefix( bssl::SealRecordPrefixLen(client.get(), record.size())), body(record.size()), suffix(bssl::SealRecordSuffixLen(client.get(), record.size())); ASSERT_TRUE(bssl::SealRecord(client.get(), bssl::MakeSpan(prefix), bssl::MakeSpan(body), bssl::MakeSpan(suffix), record)); std::vector sealed; sealed.insert(sealed.end(), prefix.begin(), prefix.end()); sealed.insert(sealed.end(), body.begin(), body.end()); sealed.insert(sealed.end(), suffix.begin(), suffix.end()); std::vector sealed_copy = sealed; bssl::Span plaintext; size_t record_len; uint8_t alert = 255; EXPECT_EQ(bssl::OpenRecord(server.get(), &plaintext, &record_len, &alert, bssl::MakeSpan(sealed)), bssl::OpenRecordResult::kOK); EXPECT_EQ(record_len, sealed.size()); EXPECT_EQ(plaintext, record); EXPECT_EQ(255, alert); } TEST(SSLTest, SealRecordInPlace) { bssl::UniquePtr client_ctx(SSL_CTX_new(TLS_method())), server_ctx(SSL_CTX_new(TLS_method())); ASSERT_TRUE(client_ctx); ASSERT_TRUE(server_ctx); bssl::UniquePtr cert = GetTestCertificate(); bssl::UniquePtr key = GetTestKey(); ASSERT_TRUE(cert); ASSERT_TRUE(key); ASSERT_TRUE(SSL_CTX_use_certificate(server_ctx.get(), cert.get())); ASSERT_TRUE(SSL_CTX_use_PrivateKey(server_ctx.get(), key.get())); bssl::UniquePtr client, server; ASSERT_TRUE(ConnectClientAndServer(&client, &server, client_ctx.get(), server_ctx.get())); const std::vector plaintext = {1, 2, 3, 4, 5}; std::vector record = plaintext; std::vector prefix( bssl::SealRecordPrefixLen(client.get(), record.size())), suffix(bssl::SealRecordSuffixLen(client.get(), record.size())); ASSERT_TRUE(bssl::SealRecord(client.get(), bssl::MakeSpan(prefix), bssl::MakeSpan(record), bssl::MakeSpan(suffix), record)); record.insert(record.begin(), prefix.begin(), prefix.end()); record.insert(record.end(), suffix.begin(), suffix.end()); bssl::Span result; size_t record_len; uint8_t alert; EXPECT_EQ(bssl::OpenRecord(server.get(), &result, &record_len, &alert, bssl::MakeSpan(record)), bssl::OpenRecordResult::kOK); EXPECT_EQ(record_len, record.size()); EXPECT_EQ(plaintext, result); } TEST(SSLTest, SealRecordTrailingData) { bssl::UniquePtr client_ctx(SSL_CTX_new(TLS_method())), server_ctx(SSL_CTX_new(TLS_method())); ASSERT_TRUE(client_ctx); ASSERT_TRUE(server_ctx); bssl::UniquePtr cert = GetTestCertificate(); bssl::UniquePtr key = GetTestKey(); ASSERT_TRUE(cert); ASSERT_TRUE(key); ASSERT_TRUE(SSL_CTX_use_certificate(server_ctx.get(), cert.get())); ASSERT_TRUE(SSL_CTX_use_PrivateKey(server_ctx.get(), key.get())); bssl::UniquePtr client, server; ASSERT_TRUE(ConnectClientAndServer(&client, &server, client_ctx.get(), server_ctx.get())); const std::vector plaintext = {1, 2, 3, 4, 5}; std::vector record = plaintext; std::vector prefix( bssl::SealRecordPrefixLen(client.get(), record.size())), suffix(bssl::SealRecordSuffixLen(client.get(), record.size())); ASSERT_TRUE(bssl::SealRecord(client.get(), bssl::MakeSpan(prefix), bssl::MakeSpan(record), bssl::MakeSpan(suffix), record)); record.insert(record.begin(), prefix.begin(), prefix.end()); record.insert(record.end(), suffix.begin(), suffix.end()); record.insert(record.end(), {5, 4, 3, 2, 1}); bssl::Span result; size_t record_len; uint8_t alert; EXPECT_EQ(bssl::OpenRecord(server.get(), &result, &record_len, &alert, bssl::MakeSpan(record)), bssl::OpenRecordResult::kOK); EXPECT_EQ(record_len, record.size() - 5); EXPECT_EQ(plaintext, result); } TEST(SSLTest, SealRecordInvalidSpanSize) { bssl::UniquePtr client_ctx(SSL_CTX_new(TLS_method())), server_ctx(SSL_CTX_new(TLS_method())); ASSERT_TRUE(client_ctx); ASSERT_TRUE(server_ctx); bssl::UniquePtr cert = GetTestCertificate(); bssl::UniquePtr key = GetTestKey(); ASSERT_TRUE(cert); ASSERT_TRUE(key); ASSERT_TRUE(SSL_CTX_use_certificate(server_ctx.get(), cert.get())); ASSERT_TRUE(SSL_CTX_use_PrivateKey(server_ctx.get(), key.get())); bssl::UniquePtr client, server; ASSERT_TRUE(ConnectClientAndServer(&client, &server, client_ctx.get(), server_ctx.get())); std::vector record = {1, 2, 3, 4, 5}; std::vector prefix( bssl::SealRecordPrefixLen(client.get(), record.size())), body(record.size()), suffix(bssl::SealRecordSuffixLen(client.get(), record.size())); auto expect_err = []() { int err = ERR_get_error(); EXPECT_EQ(ERR_GET_LIB(err), ERR_LIB_SSL); EXPECT_EQ(ERR_GET_REASON(err), SSL_R_BUFFER_TOO_SMALL); ERR_clear_error(); }; EXPECT_FALSE(bssl::SealRecord( client.get(), bssl::MakeSpan(prefix.data(), prefix.size() - 1), bssl::MakeSpan(record), bssl::MakeSpan(suffix), record)); expect_err(); EXPECT_FALSE(bssl::SealRecord( client.get(), bssl::MakeSpan(prefix.data(), prefix.size() + 1), bssl::MakeSpan(record), bssl::MakeSpan(suffix), record)); expect_err(); EXPECT_FALSE( bssl::SealRecord(client.get(), bssl::MakeSpan(prefix), bssl::MakeSpan(record.data(), record.size() - 1), bssl::MakeSpan(suffix), record)); expect_err(); EXPECT_FALSE( bssl::SealRecord(client.get(), bssl::MakeSpan(prefix), bssl::MakeSpan(record.data(), record.size() + 1), bssl::MakeSpan(suffix), record)); expect_err(); EXPECT_FALSE(bssl::SealRecord( client.get(), bssl::MakeSpan(prefix), bssl::MakeSpan(record), bssl::MakeSpan(suffix.data(), suffix.size() - 1), record)); expect_err(); EXPECT_FALSE(bssl::SealRecord( client.get(), bssl::MakeSpan(prefix), bssl::MakeSpan(record), bssl::MakeSpan(suffix.data(), suffix.size() + 1), record)); expect_err(); } // The client should gracefully handle no suitable ciphers being enabled. TEST(SSLTest, NoCiphersAvailable) { bssl::UniquePtr ctx(SSL_CTX_new(TLS_method())); ASSERT_TRUE(ctx); // Configure |client_ctx| with a cipher list that does not intersect with its // version configuration. ASSERT_TRUE(SSL_CTX_set_strict_cipher_list( ctx.get(), "TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256")); ASSERT_TRUE(SSL_CTX_set_max_proto_version(ctx.get(), TLS1_1_VERSION)); bssl::UniquePtr ssl(SSL_new(ctx.get())); ASSERT_TRUE(ssl); SSL_set_connect_state(ssl.get()); UniquePtr rbio(BIO_new(BIO_s_mem())), wbio(BIO_new(BIO_s_mem())); ASSERT_TRUE(rbio); ASSERT_TRUE(wbio); SSL_set0_rbio(ssl.get(), rbio.release()); SSL_set0_wbio(ssl.get(), wbio.release()); int ret = SSL_do_handshake(ssl.get()); EXPECT_EQ(-1, ret); EXPECT_EQ(SSL_ERROR_SSL, SSL_get_error(ssl.get(), ret)); uint32_t err = ERR_get_error(); EXPECT_EQ(ERR_LIB_SSL, ERR_GET_LIB(err)); EXPECT_EQ(SSL_R_NO_CIPHERS_AVAILABLE, ERR_GET_REASON(err)); } TEST_P(SSLVersionTest, SessionVersion) { SSL_CTX_set_session_cache_mode(client_ctx_.get(), SSL_SESS_CACHE_BOTH); SSL_CTX_set_session_cache_mode(server_ctx_.get(), SSL_SESS_CACHE_BOTH); bssl::UniquePtr session = CreateClientSession(client_ctx_.get(), server_ctx_.get()); ASSERT_TRUE(session); EXPECT_EQ(version(), SSL_SESSION_get_protocol_version(session.get())); // Sessions in TLS 1.3 and later should be single-use. EXPECT_EQ(version() == TLS1_3_VERSION, !!SSL_SESSION_should_be_single_use(session.get())); // Making fake sessions for testing works. session.reset(SSL_SESSION_new(client_ctx_.get())); ASSERT_TRUE(session); ASSERT_TRUE(SSL_SESSION_set_protocol_version(session.get(), version())); EXPECT_EQ(version(), SSL_SESSION_get_protocol_version(session.get())); } TEST_P(SSLVersionTest, SSLPending) { UniquePtr ssl(SSL_new(client_ctx_.get())); ASSERT_TRUE(ssl); EXPECT_EQ(0, SSL_pending(ssl.get())); ASSERT_TRUE(Connect()); EXPECT_EQ(0, SSL_pending(client_.get())); ASSERT_EQ(5, SSL_write(server_.get(), "hello", 5)); ASSERT_EQ(5, SSL_write(server_.get(), "world", 5)); EXPECT_EQ(0, SSL_pending(client_.get())); char buf[10]; ASSERT_EQ(1, SSL_peek(client_.get(), buf, 1)); EXPECT_EQ(5, SSL_pending(client_.get())); ASSERT_EQ(1, SSL_read(client_.get(), buf, 1)); EXPECT_EQ(4, SSL_pending(client_.get())); ASSERT_EQ(4, SSL_read(client_.get(), buf, 10)); EXPECT_EQ(0, SSL_pending(client_.get())); ASSERT_EQ(2, SSL_read(client_.get(), buf, 2)); EXPECT_EQ(3, SSL_pending(client_.get())); } // Test that post-handshake tickets consumed by |SSL_shutdown| are ignored. TEST(SSLTest, ShutdownIgnoresTickets) { bssl::UniquePtr ctx(SSL_CTX_new(TLS_method())); ASSERT_TRUE(ctx); ASSERT_TRUE(SSL_CTX_set_min_proto_version(ctx.get(), TLS1_3_VERSION)); ASSERT_TRUE(SSL_CTX_set_max_proto_version(ctx.get(), TLS1_3_VERSION)); bssl::UniquePtr cert = GetTestCertificate(); bssl::UniquePtr key = GetTestKey(); ASSERT_TRUE(cert); ASSERT_TRUE(key); ASSERT_TRUE(SSL_CTX_use_certificate(ctx.get(), cert.get())); ASSERT_TRUE(SSL_CTX_use_PrivateKey(ctx.get(), key.get())); SSL_CTX_set_session_cache_mode(ctx.get(), SSL_SESS_CACHE_BOTH); bssl::UniquePtr client, server; ASSERT_TRUE(ConnectClientAndServer(&client, &server, ctx.get(), ctx.get())); SSL_CTX_sess_set_new_cb(ctx.get(), [](SSL *ssl, SSL_SESSION *session) -> int { ADD_FAILURE() << "New session callback called during SSL_shutdown"; return 0; }); // Send close_notify. EXPECT_EQ(0, SSL_shutdown(server.get())); EXPECT_EQ(0, SSL_shutdown(client.get())); // Receive close_notify. EXPECT_EQ(1, SSL_shutdown(server.get())); EXPECT_EQ(1, SSL_shutdown(client.get())); } TEST(SSLTest, SignatureAlgorithmProperties) { EXPECT_EQ(EVP_PKEY_NONE, SSL_get_signature_algorithm_key_type(0x1234)); EXPECT_EQ(nullptr, SSL_get_signature_algorithm_digest(0x1234)); EXPECT_FALSE(SSL_is_signature_algorithm_rsa_pss(0x1234)); EXPECT_EQ(EVP_PKEY_RSA, SSL_get_signature_algorithm_key_type(SSL_SIGN_RSA_PKCS1_MD5_SHA1)); EXPECT_EQ(EVP_md5_sha1(), SSL_get_signature_algorithm_digest(SSL_SIGN_RSA_PKCS1_MD5_SHA1)); EXPECT_FALSE(SSL_is_signature_algorithm_rsa_pss(SSL_SIGN_RSA_PKCS1_MD5_SHA1)); EXPECT_EQ(EVP_PKEY_EC, SSL_get_signature_algorithm_key_type( SSL_SIGN_ECDSA_SECP256R1_SHA256)); EXPECT_EQ(EVP_sha256(), SSL_get_signature_algorithm_digest( SSL_SIGN_ECDSA_SECP256R1_SHA256)); EXPECT_FALSE( SSL_is_signature_algorithm_rsa_pss(SSL_SIGN_ECDSA_SECP256R1_SHA256)); EXPECT_EQ(EVP_PKEY_RSA, SSL_get_signature_algorithm_key_type(SSL_SIGN_RSA_PSS_RSAE_SHA384)); EXPECT_EQ(EVP_sha384(), SSL_get_signature_algorithm_digest(SSL_SIGN_RSA_PSS_RSAE_SHA384)); EXPECT_TRUE(SSL_is_signature_algorithm_rsa_pss(SSL_SIGN_RSA_PSS_RSAE_SHA384)); } static int XORCompressFunc(SSL *ssl, CBB *out, const uint8_t *in, size_t in_len) { for (size_t i = 0; i < in_len; i++) { if (!CBB_add_u8(out, in[i] ^ 0x55)) { return 0; } } SSL_set_app_data(ssl, XORCompressFunc); return 1; } static int XORDecompressFunc(SSL *ssl, CRYPTO_BUFFER **out, size_t uncompressed_len, const uint8_t *in, size_t in_len) { if (in_len != uncompressed_len) { return 0; } uint8_t *data; *out = CRYPTO_BUFFER_alloc(&data, uncompressed_len); if (*out == nullptr) { return 0; } for (size_t i = 0; i < in_len; i++) { data[i] = in[i] ^ 0x55; } SSL_set_app_data(ssl, XORDecompressFunc); return 1; } TEST(SSLTest, CertCompression) { bssl::UniquePtr client_ctx(SSL_CTX_new(TLS_method())); bssl::UniquePtr server_ctx(SSL_CTX_new(TLS_method())); ASSERT_TRUE(client_ctx); ASSERT_TRUE(server_ctx); bssl::UniquePtr cert = GetTestCertificate(); bssl::UniquePtr key = GetTestKey(); ASSERT_TRUE(cert); ASSERT_TRUE(key); ASSERT_TRUE(SSL_CTX_use_certificate(server_ctx.get(), cert.get())); ASSERT_TRUE(SSL_CTX_use_PrivateKey(server_ctx.get(), key.get())); ASSERT_TRUE(SSL_CTX_set_max_proto_version(client_ctx.get(), TLS1_3_VERSION)); ASSERT_TRUE(SSL_CTX_set_max_proto_version(server_ctx.get(), TLS1_3_VERSION)); ASSERT_TRUE(SSL_CTX_add_cert_compression_alg( client_ctx.get(), 0x1234, XORCompressFunc, XORDecompressFunc)); ASSERT_TRUE(SSL_CTX_add_cert_compression_alg( server_ctx.get(), 0x1234, XORCompressFunc, XORDecompressFunc)); bssl::UniquePtr client, server; ASSERT_TRUE(ConnectClientAndServer(&client, &server, client_ctx.get(), server_ctx.get())); EXPECT_TRUE(SSL_get_app_data(client.get()) == XORDecompressFunc); EXPECT_TRUE(SSL_get_app_data(server.get()) == XORCompressFunc); } void MoveBIOs(SSL *dest, SSL *src) { BIO *rbio = SSL_get_rbio(src); BIO_up_ref(rbio); SSL_set0_rbio(dest, rbio); BIO *wbio = SSL_get_wbio(src); BIO_up_ref(wbio); SSL_set0_wbio(dest, wbio); SSL_set0_rbio(src, nullptr); SSL_set0_wbio(src, nullptr); } TEST(SSLTest, Handoff) { bssl::UniquePtr client_ctx(SSL_CTX_new(TLS_method())); bssl::UniquePtr server_ctx(SSL_CTX_new(TLS_method())); bssl::UniquePtr handshaker_ctx(SSL_CTX_new(TLS_method())); ASSERT_TRUE(client_ctx); ASSERT_TRUE(server_ctx); ASSERT_TRUE(handshaker_ctx); SSL_CTX_set_handoff_mode(server_ctx.get(), 1); ASSERT_TRUE(SSL_CTX_set_max_proto_version(server_ctx.get(), TLS1_2_VERSION)); ASSERT_TRUE( SSL_CTX_set_max_proto_version(handshaker_ctx.get(), TLS1_2_VERSION)); bssl::UniquePtr cert = GetTestCertificate(); bssl::UniquePtr key = GetTestKey(); ASSERT_TRUE(cert); ASSERT_TRUE(key); ASSERT_TRUE(SSL_CTX_use_certificate(handshaker_ctx.get(), cert.get())); ASSERT_TRUE(SSL_CTX_use_PrivateKey(handshaker_ctx.get(), key.get())); bssl::UniquePtr client, server; ASSERT_TRUE(ConnectClientAndServer(&client, &server, client_ctx.get(), server_ctx.get(), ClientConfig(), false /* don't handshake */)); int client_ret = SSL_do_handshake(client.get()); int client_err = SSL_get_error(client.get(), client_ret); ASSERT_EQ(client_err, SSL_ERROR_WANT_READ); int server_ret = SSL_do_handshake(server.get()); int server_err = SSL_get_error(server.get(), server_ret); ASSERT_EQ(server_err, SSL_ERROR_HANDOFF); ScopedCBB cbb; Array handoff; SSL_CLIENT_HELLO hello; ASSERT_TRUE(CBB_init(cbb.get(), 256)); ASSERT_TRUE(SSL_serialize_handoff(server.get(), cbb.get(), &hello)); ASSERT_TRUE(CBBFinishArray(cbb.get(), &handoff)); bssl::UniquePtr handshaker(SSL_new(handshaker_ctx.get())); ASSERT_TRUE(SSL_apply_handoff(handshaker.get(), handoff)); MoveBIOs(handshaker.get(), server.get()); int handshake_ret = SSL_do_handshake(handshaker.get()); int handshake_err = SSL_get_error(handshaker.get(), handshake_ret); ASSERT_EQ(handshake_err, SSL_ERROR_HANDBACK); // Double-check that additional calls to |SSL_do_handshake| continue // to get |SSL_ERRROR_HANDBACK|. handshake_ret = SSL_do_handshake(handshaker.get()); handshake_err = SSL_get_error(handshaker.get(), handshake_ret); ASSERT_EQ(handshake_err, SSL_ERROR_HANDBACK); ScopedCBB cbb_handback; Array handback; ASSERT_TRUE(CBB_init(cbb_handback.get(), 1024)); ASSERT_TRUE(SSL_serialize_handback(handshaker.get(), cbb_handback.get())); ASSERT_TRUE(CBBFinishArray(cbb_handback.get(), &handback)); bssl::UniquePtr server2(SSL_new(server_ctx.get())); ASSERT_TRUE(SSL_apply_handback(server2.get(), handback)); MoveBIOs(server2.get(), handshaker.get()); ASSERT_TRUE(CompleteHandshakes(client.get(), server2.get())); uint8_t byte = 42; EXPECT_EQ(SSL_write(client.get(), &byte, 1), 1); EXPECT_EQ(SSL_read(server2.get(), &byte, 1), 1); EXPECT_EQ(42, byte); byte = 43; EXPECT_EQ(SSL_write(server2.get(), &byte, 1), 1); EXPECT_EQ(SSL_read(client.get(), &byte, 1), 1); EXPECT_EQ(43, byte); } TEST(SSLTest, HandoffDeclined) { bssl::UniquePtr client_ctx(SSL_CTX_new(TLS_method())); bssl::UniquePtr server_ctx(SSL_CTX_new(TLS_method())); ASSERT_TRUE(client_ctx); ASSERT_TRUE(server_ctx); SSL_CTX_set_handoff_mode(server_ctx.get(), 1); ASSERT_TRUE(SSL_CTX_set_max_proto_version(server_ctx.get(), TLS1_2_VERSION)); bssl::UniquePtr cert = GetTestCertificate(); bssl::UniquePtr key = GetTestKey(); ASSERT_TRUE(cert); ASSERT_TRUE(key); ASSERT_TRUE(SSL_CTX_use_certificate(server_ctx.get(), cert.get())); ASSERT_TRUE(SSL_CTX_use_PrivateKey(server_ctx.get(), key.get())); bssl::UniquePtr client, server; ASSERT_TRUE(ConnectClientAndServer(&client, &server, client_ctx.get(), server_ctx.get(), ClientConfig(), false /* don't handshake */)); int client_ret = SSL_do_handshake(client.get()); int client_err = SSL_get_error(client.get(), client_ret); ASSERT_EQ(client_err, SSL_ERROR_WANT_READ); int server_ret = SSL_do_handshake(server.get()); int server_err = SSL_get_error(server.get(), server_ret); ASSERT_EQ(server_err, SSL_ERROR_HANDOFF); ScopedCBB cbb; SSL_CLIENT_HELLO hello; ASSERT_TRUE(CBB_init(cbb.get(), 256)); ASSERT_TRUE(SSL_serialize_handoff(server.get(), cbb.get(), &hello)); ASSERT_TRUE(SSL_decline_handoff(server.get())); ASSERT_TRUE(CompleteHandshakes(client.get(), server.get())); uint8_t byte = 42; EXPECT_EQ(SSL_write(client.get(), &byte, 1), 1); EXPECT_EQ(SSL_read(server.get(), &byte, 1), 1); EXPECT_EQ(42, byte); byte = 43; EXPECT_EQ(SSL_write(server.get(), &byte, 1), 1); EXPECT_EQ(SSL_read(client.get(), &byte, 1), 1); EXPECT_EQ(43, byte); } static std::string SigAlgsToString(Span sigalgs) { std::string ret = "{"; for (uint16_t v : sigalgs) { if (ret.size() > 1) { ret += ", "; } char buf[8]; snprintf(buf, sizeof(buf) - 1, "0x%02x", v); buf[sizeof(buf)-1] = 0; ret += std::string(buf); } ret += "}"; return ret; } void ExpectSigAlgsEqual(Span expected, Span actual) { bool matches = false; if (expected.size() == actual.size()) { matches = true; for (size_t i = 0; i < expected.size(); i++) { if (expected[i] != actual[i]) { matches = false; break; } } } if (!matches) { ADD_FAILURE() << "expected: " << SigAlgsToString(expected) << " got: " << SigAlgsToString(actual); } } TEST(SSLTest, SigAlgs) { static const struct { std::vector input; bool ok; std::vector expected; } kTests[] = { {{}, true, {}}, {{1}, false, {}}, {{1, 2, 3}, false, {}}, {{NID_sha256, EVP_PKEY_ED25519}, false, {}}, {{NID_sha256, EVP_PKEY_RSA, NID_sha256, EVP_PKEY_RSA}, false, {}}, {{NID_sha256, EVP_PKEY_RSA}, true, {SSL_SIGN_RSA_PKCS1_SHA256}}, {{NID_sha512, EVP_PKEY_RSA}, true, {SSL_SIGN_RSA_PKCS1_SHA512}}, {{NID_sha256, EVP_PKEY_RSA_PSS}, true, {SSL_SIGN_RSA_PSS_RSAE_SHA256}}, {{NID_undef, EVP_PKEY_ED25519}, true, {SSL_SIGN_ED25519}}, {{NID_undef, EVP_PKEY_ED25519, NID_sha384, EVP_PKEY_EC}, true, {SSL_SIGN_ED25519, SSL_SIGN_ECDSA_SECP384R1_SHA384}}, }; UniquePtr ctx(SSL_CTX_new(TLS_method())); unsigned n = 1; for (const auto &test : kTests) { SCOPED_TRACE(n++); const bool ok = SSL_CTX_set1_sigalgs(ctx.get(), test.input.data(), test.input.size()); EXPECT_EQ(ok, test.ok); if (!ok) { ERR_clear_error(); } if (!test.ok) { continue; } ExpectSigAlgsEqual(test.expected, ctx->cert->sigalgs); } } TEST(SSLTest, SigAlgsList) { static const struct { const char *input; bool ok; std::vector expected; } kTests[] = { {"", false, {}}, {":", false, {}}, {"+", false, {}}, {"RSA", false, {}}, {"RSA+", false, {}}, {"RSA+SHA256:", false, {}}, {":RSA+SHA256:", false, {}}, {":RSA+SHA256+:", false, {}}, {"!", false, {}}, {"\x01", false, {}}, {"RSA+SHA256:RSA+SHA384:RSA+SHA256", false, {}}, {"RSA-PSS+SHA256:rsa_pss_rsae_sha256", false, {}}, {"RSA+SHA256", true, {SSL_SIGN_RSA_PKCS1_SHA256}}, {"RSA+SHA256:ed25519", true, {SSL_SIGN_RSA_PKCS1_SHA256, SSL_SIGN_ED25519}}, {"ECDSA+SHA256:RSA+SHA512", true, {SSL_SIGN_ECDSA_SECP256R1_SHA256, SSL_SIGN_RSA_PKCS1_SHA512}}, {"ecdsa_secp256r1_sha256:rsa_pss_rsae_sha256", true, {SSL_SIGN_ECDSA_SECP256R1_SHA256, SSL_SIGN_RSA_PSS_RSAE_SHA256}}, {"RSA-PSS+SHA256", true, {SSL_SIGN_RSA_PSS_RSAE_SHA256}}, {"PSS+SHA256", true, {SSL_SIGN_RSA_PSS_RSAE_SHA256}}, }; UniquePtr ctx(SSL_CTX_new(TLS_method())); unsigned n = 1; for (const auto &test : kTests) { SCOPED_TRACE(n++); const bool ok = SSL_CTX_set1_sigalgs_list(ctx.get(), test.input); EXPECT_EQ(ok, test.ok); if (!ok) { if (test.ok) { ERR_print_errors_fp(stderr); } ERR_clear_error(); } if (!test.ok) { continue; } ExpectSigAlgsEqual(test.expected, ctx->cert->sigalgs); } } TEST(SSLTest, ApplyHandoffRemovesUnsupportedCiphers) { bssl::UniquePtr server_ctx(SSL_CTX_new(TLS_method())); bssl::UniquePtr server(SSL_new(server_ctx.get())); // handoff is a handoff message that has been artificially modified to pretend // that only cipher 0x0A is supported. When it is applied to |server|, all // ciphers but that one should be removed. // // To make a new one of these, try sticking this in the |Handoff| test above: // // hexdump(stderr, "", handoff.data(), handoff.size()); // sed -e 's/\(..\)/0x\1, /g' // // and modify serialize_features() to emit only cipher 0x0A. uint8_t handoff[] = { 0x30, 0x81, 0x9a, 0x02, 0x01, 0x00, 0x04, 0x00, 0x04, 0x81, 0x82, 0x01, 0x00, 0x00, 0x7e, 0x03, 0x03, 0x30, 0x8e, 0x8f, 0x79, 0xd2, 0x87, 0x39, 0xc2, 0x23, 0x23, 0x13, 0xca, 0x3c, 0x80, 0x44, 0xfd, 0x80, 0x83, 0x62, 0x3c, 0xcc, 0xf8, 0x76, 0xd3, 0x62, 0xbb, 0x54, 0xe3, 0xc4, 0x39, 0x24, 0xa5, 0x00, 0x00, 0x1e, 0xc0, 0x2b, 0xc0, 0x2f, 0xc0, 0x2c, 0xc0, 0x30, 0xcc, 0xa9, 0xcc, 0xa8, 0xc0, 0x09, 0xc0, 0x13, 0xc0, 0x0a, 0xc0, 0x14, 0x00, 0x9c, 0x00, 0x9d, 0x00, 0x2f, 0x00, 0x35, 0x00, 0x0a, 0x01, 0x00, 0x00, 0x37, 0x00, 0x17, 0x00, 0x00, 0xff, 0x01, 0x00, 0x01, 0x00, 0x00, 0x0a, 0x00, 0x08, 0x00, 0x06, 0x00, 0x1d, 0x00, 0x17, 0x00, 0x18, 0x00, 0x0b, 0x00, 0x02, 0x01, 0x00, 0x00, 0x23, 0x00, 0x00, 0x00, 0x0d, 0x00, 0x14, 0x00, 0x12, 0x04, 0x03, 0x08, 0x04, 0x04, 0x01, 0x05, 0x03, 0x08, 0x05, 0x05, 0x01, 0x08, 0x06, 0x06, 0x01, 0x02, 0x01, 0x04, 0x02, 0x00, 0x0a, 0x04, 0x0a, 0x00, 0x15, 0x00, 0x17, 0x00, 0x18, 0x00, 0x19, 0x00, 0x1d, }; EXPECT_EQ(20u, sk_SSL_CIPHER_num(SSL_get_ciphers(server.get()))); ASSERT_TRUE( SSL_apply_handoff(server.get(), {handoff, OPENSSL_ARRAY_SIZE(handoff)})); EXPECT_EQ(1u, sk_SSL_CIPHER_num(SSL_get_ciphers(server.get()))); } TEST(SSLTest, ApplyHandoffRemovesUnsupportedCurves) { bssl::UniquePtr server_ctx(SSL_CTX_new(TLS_method())); bssl::UniquePtr server(SSL_new(server_ctx.get())); // handoff is a handoff message that has been artificially modified to pretend // that only one curve is supported. When it is applied to |server|, all // curves but that one should be removed. // // See |ApplyHandoffRemovesUnsupportedCiphers| for how to make a new one of // these. uint8_t handoff[] = { 0x30, 0x81, 0xc0, 0x02, 0x01, 0x00, 0x04, 0x00, 0x04, 0x81, 0x82, 0x01, 0x00, 0x00, 0x7e, 0x03, 0x03, 0x98, 0x30, 0xce, 0xd9, 0xb0, 0xdf, 0x5f, 0x82, 0x05, 0x4a, 0x43, 0x67, 0x7e, 0xdb, 0x6a, 0x4f, 0x21, 0x18, 0x4e, 0x0d, 0x94, 0x63, 0x18, 0x8b, 0x54, 0x89, 0xdb, 0x8b, 0x1d, 0x84, 0xbc, 0x09, 0x00, 0x00, 0x1e, 0xc0, 0x2b, 0xc0, 0x2f, 0xc0, 0x2c, 0xc0, 0x30, 0xcc, 0xa9, 0xcc, 0xa8, 0xc0, 0x09, 0xc0, 0x13, 0xc0, 0x0a, 0xc0, 0x14, 0x00, 0x9c, 0x00, 0x9d, 0x00, 0x2f, 0x00, 0x35, 0x00, 0x0a, 0x01, 0x00, 0x00, 0x37, 0x00, 0x17, 0x00, 0x00, 0xff, 0x01, 0x00, 0x01, 0x00, 0x00, 0x0a, 0x00, 0x08, 0x00, 0x06, 0x00, 0x1d, 0x00, 0x17, 0x00, 0x18, 0x00, 0x0b, 0x00, 0x02, 0x01, 0x00, 0x00, 0x23, 0x00, 0x00, 0x00, 0x0d, 0x00, 0x14, 0x00, 0x12, 0x04, 0x03, 0x08, 0x04, 0x04, 0x01, 0x05, 0x03, 0x08, 0x05, 0x05, 0x01, 0x08, 0x06, 0x06, 0x01, 0x02, 0x01, 0x04, 0x30, 0x00, 0x02, 0x00, 0x0a, 0x00, 0x2f, 0x00, 0x35, 0x00, 0x8c, 0x00, 0x8d, 0x00, 0x9c, 0x00, 0x9d, 0x13, 0x01, 0x13, 0x02, 0x13, 0x03, 0xc0, 0x09, 0xc0, 0x0a, 0xc0, 0x13, 0xc0, 0x14, 0xc0, 0x2b, 0xc0, 0x2c, 0xc0, 0x2f, 0xc0, 0x30, 0xc0, 0x35, 0xc0, 0x36, 0xcc, 0xa8, 0xcc, 0xa9, 0xcc, 0xac, 0x04, 0x02, 0x00, 0x17, }; // The zero length means that the default list of groups is used. EXPECT_EQ(0u, server->config->supported_group_list.size()); ASSERT_TRUE( SSL_apply_handoff(server.get(), {handoff, OPENSSL_ARRAY_SIZE(handoff)})); EXPECT_EQ(1u, server->config->supported_group_list.size()); } TEST(SSLTest, ZeroSizedWiteFlushesHandshakeMessages) { // If there are pending handshake mesages, an |SSL_write| of zero bytes should // flush them. bssl::UniquePtr server_ctx(SSL_CTX_new(TLS_method())); EXPECT_TRUE(SSL_CTX_set_max_proto_version(server_ctx.get(), TLS1_3_VERSION)); EXPECT_TRUE(SSL_CTX_set_min_proto_version(server_ctx.get(), TLS1_3_VERSION)); bssl::UniquePtr cert = GetTestCertificate(); bssl::UniquePtr key = GetTestKey(); ASSERT_TRUE(cert); ASSERT_TRUE(key); ASSERT_TRUE(SSL_CTX_use_certificate(server_ctx.get(), cert.get())); ASSERT_TRUE(SSL_CTX_use_PrivateKey(server_ctx.get(), key.get())); bssl::UniquePtr client_ctx(SSL_CTX_new(TLS_method())); EXPECT_TRUE(SSL_CTX_set_max_proto_version(client_ctx.get(), TLS1_3_VERSION)); EXPECT_TRUE(SSL_CTX_set_min_proto_version(client_ctx.get(), TLS1_3_VERSION)); bssl::UniquePtr client, server; ASSERT_TRUE(ConnectClientAndServer(&client, &server, client_ctx.get(), server_ctx.get())); BIO *client_wbio = SSL_get_wbio(client.get()); EXPECT_EQ(0u, BIO_wpending(client_wbio)); EXPECT_TRUE(SSL_key_update(client.get(), SSL_KEY_UPDATE_NOT_REQUESTED)); EXPECT_EQ(0u, BIO_wpending(client_wbio)); EXPECT_EQ(0, SSL_write(client.get(), nullptr, 0)); EXPECT_NE(0u, BIO_wpending(client_wbio)); } TEST_P(SSLVersionTest, VerifyBeforeCertRequest) { // Configure the server to request client certificates. SSL_CTX_set_custom_verify( server_ctx_.get(), SSL_VERIFY_PEER, [](SSL *ssl, uint8_t *out_alert) { return ssl_verify_ok; }); // Configure the client to reject the server certificate. SSL_CTX_set_custom_verify( client_ctx_.get(), SSL_VERIFY_PEER, [](SSL *ssl, uint8_t *out_alert) { return ssl_verify_invalid; }); // cert_cb should not be called. Verification should fail first. SSL_CTX_set_cert_cb(client_ctx_.get(), [](SSL *ssl, void *arg) { ADD_FAILURE() << "cert_cb unexpectedly called"; return 0; }, nullptr); bssl::UniquePtr client, server; EXPECT_FALSE(ConnectClientAndServer(&client, &server, client_ctx_.get(), server_ctx_.get())); } // Test that ticket-based sessions on the client get fake session IDs. TEST_P(SSLVersionTest, FakeIDsForTickets) { SSL_CTX_set_session_cache_mode(client_ctx_.get(), SSL_SESS_CACHE_BOTH); SSL_CTX_set_session_cache_mode(server_ctx_.get(), SSL_SESS_CACHE_BOTH); bssl::UniquePtr session = CreateClientSession(client_ctx_.get(), server_ctx_.get()); ASSERT_TRUE(session); EXPECT_TRUE(SSL_SESSION_has_ticket(session.get())); unsigned session_id_length; SSL_SESSION_get_id(session.get(), &session_id_length); EXPECT_NE(session_id_length, 0u); } // These tests test multi-threaded behavior. They are intended to run with // ThreadSanitizer. #if defined(OPENSSL_THREADS) TEST_P(SSLVersionTest, SessionCacheThreads) { SSL_CTX_set_options(server_ctx_.get(), SSL_OP_NO_TICKET); SSL_CTX_set_session_cache_mode(client_ctx_.get(), SSL_SESS_CACHE_BOTH); SSL_CTX_set_session_cache_mode(server_ctx_.get(), SSL_SESS_CACHE_BOTH); if (version() == TLS1_3_VERSION) { // Our TLS 1.3 implementation does not support stateful resumption. ASSERT_FALSE(CreateClientSession(client_ctx_.get(), server_ctx_.get())); return; } // Establish two client sessions to test with. bssl::UniquePtr session1 = CreateClientSession(client_ctx_.get(), server_ctx_.get()); ASSERT_TRUE(session1); bssl::UniquePtr session2 = CreateClientSession(client_ctx_.get(), server_ctx_.get()); ASSERT_TRUE(session2); auto connect_with_session = [&](SSL_SESSION *session) { ClientConfig config; config.session = session; UniquePtr client, server; EXPECT_TRUE(ConnectClientAndServer(&client, &server, client_ctx_.get(), server_ctx_.get(), config)); }; // Resume sessions in parallel with establishing new ones. { std::vector threads; threads.emplace_back([&] { connect_with_session(nullptr); }); threads.emplace_back([&] { connect_with_session(nullptr); }); threads.emplace_back([&] { connect_with_session(session1.get()); }); threads.emplace_back([&] { connect_with_session(session1.get()); }); threads.emplace_back([&] { connect_with_session(session2.get()); }); threads.emplace_back([&] { connect_with_session(session2.get()); }); for (auto &thread : threads) { thread.join(); } } // Hit the maximum session cache size across multiple threads size_t limit = SSL_CTX_sess_number(server_ctx_.get()) + 2; SSL_CTX_sess_set_cache_size(server_ctx_.get(), limit); { std::vector threads; for (int i = 0; i < 4; i++) { threads.emplace_back([&]() { connect_with_session(nullptr); EXPECT_LE(SSL_CTX_sess_number(server_ctx_.get()), limit); }); } for (auto &thread : threads) { thread.join(); } EXPECT_EQ(SSL_CTX_sess_number(server_ctx_.get()), limit); } } TEST_P(SSLVersionTest, SessionTicketThreads) { for (bool renew_ticket : {false, true}) { SCOPED_TRACE(renew_ticket); ResetContexts(); SSL_CTX_set_session_cache_mode(client_ctx_.get(), SSL_SESS_CACHE_BOTH); SSL_CTX_set_session_cache_mode(server_ctx_.get(), SSL_SESS_CACHE_BOTH); if (renew_ticket) { SSL_CTX_set_tlsext_ticket_key_cb(server_ctx_.get(), RenewTicketCallback); } // Establish two client sessions to test with. bssl::UniquePtr session1 = CreateClientSession(client_ctx_.get(), server_ctx_.get()); ASSERT_TRUE(session1); bssl::UniquePtr session2 = CreateClientSession(client_ctx_.get(), server_ctx_.get()); ASSERT_TRUE(session2); auto connect_with_session = [&](SSL_SESSION *session) { ClientConfig config; config.session = session; UniquePtr client, server; EXPECT_TRUE(ConnectClientAndServer(&client, &server, client_ctx_.get(), server_ctx_.get(), config)); }; // Resume sessions in parallel with establishing new ones. { std::vector threads; threads.emplace_back([&] { connect_with_session(nullptr); }); threads.emplace_back([&] { connect_with_session(nullptr); }); threads.emplace_back([&] { connect_with_session(session1.get()); }); threads.emplace_back([&] { connect_with_session(session1.get()); }); threads.emplace_back([&] { connect_with_session(session2.get()); }); threads.emplace_back([&] { connect_with_session(session2.get()); }); for (auto &thread : threads) { thread.join(); } } } } // SSL_CTX_get0_certificate needs to lock internally. Test this works. TEST(SSLTest, GetCertificateThreads) { bssl::UniquePtr ctx(SSL_CTX_new(TLS_method())); ASSERT_TRUE(ctx); bssl::UniquePtr cert = GetTestCertificate(); ASSERT_TRUE(cert); ASSERT_TRUE(SSL_CTX_use_certificate(ctx.get(), cert.get())); // Existing code expects |SSL_CTX_get0_certificate| to be callable from two // threads concurrently. It originally was an immutable operation. Now we // implement it with a thread-safe cache, so it is worth testing. X509 *cert2_thread; std::thread thread( [&] { cert2_thread = SSL_CTX_get0_certificate(ctx.get()); }); X509 *cert2 = SSL_CTX_get0_certificate(ctx.get()); thread.join(); EXPECT_EQ(cert2, cert2_thread); EXPECT_EQ(0, X509_cmp(cert.get(), cert2)); } // Functions which access properties on the negotiated session are thread-safe // where needed. Prior to TLS 1.3, clients resuming sessions and servers // performing stateful resumption will share an underlying SSL_SESSION object, // potentially across threads. TEST_P(SSLVersionTest, SessionPropertiesThreads) { if (version() == TLS1_3_VERSION) { // Our TLS 1.3 implementation does not support stateful resumption. ASSERT_FALSE(CreateClientSession(client_ctx_.get(), server_ctx_.get())); return; } SSL_CTX_set_options(server_ctx_.get(), SSL_OP_NO_TICKET); SSL_CTX_set_session_cache_mode(client_ctx_.get(), SSL_SESS_CACHE_BOTH); SSL_CTX_set_session_cache_mode(server_ctx_.get(), SSL_SESS_CACHE_BOTH); ASSERT_TRUE(UseCertAndKey(client_ctx_.get())); ASSERT_TRUE(UseCertAndKey(server_ctx_.get())); // Configure mutual authentication, so we have more session state. SSL_CTX_set_custom_verify( client_ctx_.get(), SSL_VERIFY_PEER, [](SSL *ssl, uint8_t *out_alert) { return ssl_verify_ok; }); SSL_CTX_set_custom_verify( server_ctx_.get(), SSL_VERIFY_PEER, [](SSL *ssl, uint8_t *out_alert) { return ssl_verify_ok; }); // Establish a client session to test with. bssl::UniquePtr session = CreateClientSession(client_ctx_.get(), server_ctx_.get()); ASSERT_TRUE(session); // Resume with it twice. UniquePtr ssls[4]; ClientConfig config; config.session = session.get(); ASSERT_TRUE(ConnectClientAndServer(&ssls[0], &ssls[1], client_ctx_.get(), server_ctx_.get(), config)); ASSERT_TRUE(ConnectClientAndServer(&ssls[2], &ssls[3], client_ctx_.get(), server_ctx_.get(), config)); // Read properties in parallel. auto read_properties = [](const SSL *ssl) { EXPECT_TRUE(SSL_get_peer_cert_chain(ssl)); bssl::UniquePtr peer(SSL_get_peer_certificate(ssl)); EXPECT_TRUE(peer); EXPECT_TRUE(SSL_get_current_cipher(ssl)); EXPECT_TRUE(SSL_get_curve_id(ssl)); }; std::vector threads; for (const auto &ssl_ptr : ssls) { const SSL *ssl = ssl_ptr.get(); threads.emplace_back([=] { read_properties(ssl); }); } for (auto &thread : threads) { thread.join(); } } #endif // OPENSSL_THREADS constexpr size_t kNumQUICLevels = 4; static_assert(ssl_encryption_initial < kNumQUICLevels, "kNumQUICLevels is wrong"); static_assert(ssl_encryption_early_data < kNumQUICLevels, "kNumQUICLevels is wrong"); static_assert(ssl_encryption_handshake < kNumQUICLevels, "kNumQUICLevels is wrong"); static_assert(ssl_encryption_application < kNumQUICLevels, "kNumQUICLevels is wrong"); class MockQUICTransport { public: enum class Role { kClient, kServer }; explicit MockQUICTransport(Role role) : role_(role) { // The caller is expected to configure initial secrets. levels_[ssl_encryption_initial].write_secret = {1}; levels_[ssl_encryption_initial].read_secret = {1}; } void set_peer(MockQUICTransport *peer) { peer_ = peer; } bool has_alert() const { return has_alert_; } ssl_encryption_level_t alert_level() const { return alert_level_; } uint8_t alert() const { return alert_; } bool PeerSecretsMatch(ssl_encryption_level_t level) const { return levels_[level].write_secret == peer_->levels_[level].read_secret && levels_[level].read_secret == peer_->levels_[level].write_secret && levels_[level].cipher == peer_->levels_[level].cipher; } bool HasSecrets(ssl_encryption_level_t level) const { return !levels_[level].write_secret.empty() || !levels_[level].read_secret.empty(); } bool SetEncryptionSecrets(ssl_encryption_level_t level, const uint8_t *read_secret, const uint8_t *write_secret, size_t secret_len, const SSL_CIPHER *cipher) { if (HasSecrets(level)) { ADD_FAILURE() << "duplicate keys configured"; return false; } if (cipher == nullptr) { ADD_FAILURE() << "current cipher unavailable"; return false; } bool expect_read_secret = true, expect_write_secret = true; if (level == ssl_encryption_early_data) { if (role_ == Role::kClient) { expect_read_secret = false; } else { expect_write_secret = false; } } if (expect_read_secret) { if (read_secret == nullptr) { ADD_FAILURE() << "read secret was unexpectedly null"; return false; } levels_[level].read_secret.assign(read_secret, read_secret + secret_len); } else if (read_secret != nullptr) { ADD_FAILURE() << "unexpected read secret"; return false; } if (expect_write_secret) { if (write_secret == nullptr) { ADD_FAILURE() << "write secret was unexpectedly null"; return false; } levels_[level].write_secret.assign(write_secret, write_secret + secret_len); } else if (write_secret != nullptr) { ADD_FAILURE() << "unexpected write secret"; return false; } levels_[level].cipher = SSL_CIPHER_get_id(cipher); return true; } bool WriteHandshakeData(ssl_encryption_level_t level, Span data) { if (levels_[level].write_secret.empty()) { ADD_FAILURE() << "data written before keys configured"; return false; } levels_[level].write_data.insert(levels_[level].write_data.end(), data.begin(), data.end()); return true; } bool SendAlert(ssl_encryption_level_t level, uint8_t alert_value) { if (has_alert_) { ADD_FAILURE() << "duplicate alert sent"; return false; } if (levels_[level].write_secret.empty()) { ADD_FAILURE() << "alert sent before keys configured"; return false; } has_alert_ = true; alert_level_ = level; alert_ = alert_value; return true; } bool ReadHandshakeData(std::vector *out, ssl_encryption_level_t level, size_t num = std::numeric_limits::max()) { if (levels_[level].read_secret.empty()) { ADD_FAILURE() << "data read before keys configured in level " << level; return false; } // The peer may not have configured any keys yet. if (peer_->levels_[level].write_secret.empty()) { out->clear(); return true; } // Check the peer computed the same key. if (peer_->levels_[level].write_secret != levels_[level].read_secret) { ADD_FAILURE() << "peer write key does not match read key in level " << level; return false; } if (peer_->levels_[level].cipher != levels_[level].cipher) { ADD_FAILURE() << "peer cipher does not match in level " << level; return false; } std::vector *peer_data = &peer_->levels_[level].write_data; num = std::min(num, peer_data->size()); out->assign(peer_data->begin(), peer_data->begin() + num); peer_data->erase(peer_data->begin(), peer_data->begin() + num); return true; } private: Role role_; MockQUICTransport *peer_ = nullptr; bool has_alert_ = false; ssl_encryption_level_t alert_level_ = ssl_encryption_initial; uint8_t alert_ = 0; struct Level { std::vector write_data; std::vector write_secret; std::vector read_secret; uint32_t cipher = 0; }; Level levels_[kNumQUICLevels]; }; class MockQUICTransportPair { public: MockQUICTransportPair() : client_(MockQUICTransport::Role::kClient), server_(MockQUICTransport::Role::kServer) { client_.set_peer(&server_); server_.set_peer(&client_); } ~MockQUICTransportPair() { client_.set_peer(nullptr); server_.set_peer(nullptr); } MockQUICTransport *client() { return &client_; } MockQUICTransport *server() { return &server_; } bool SecretsMatch(ssl_encryption_level_t level) const { return client_.HasSecrets(level) && server_.HasSecrets(level) && client_.PeerSecretsMatch(level); } private: MockQUICTransport client_; MockQUICTransport server_; }; class QUICMethodTest : public testing::Test { protected: void SetUp() override { client_ctx_.reset(SSL_CTX_new(TLS_method())); server_ctx_.reset(SSL_CTX_new(TLS_method())); ASSERT_TRUE(client_ctx_); ASSERT_TRUE(server_ctx_); bssl::UniquePtr cert = GetTestCertificate(); bssl::UniquePtr key = GetTestKey(); ASSERT_TRUE(cert); ASSERT_TRUE(key); ASSERT_TRUE(SSL_CTX_use_certificate(server_ctx_.get(), cert.get())); ASSERT_TRUE(SSL_CTX_use_PrivateKey(server_ctx_.get(), key.get())); SSL_CTX_set_min_proto_version(server_ctx_.get(), TLS1_3_VERSION); SSL_CTX_set_max_proto_version(server_ctx_.get(), TLS1_3_VERSION); SSL_CTX_set_min_proto_version(client_ctx_.get(), TLS1_3_VERSION); SSL_CTX_set_max_proto_version(client_ctx_.get(), TLS1_3_VERSION); } static MockQUICTransport *TransportFromSSL(const SSL *ssl) { return ex_data_.Get(ssl); } static bool ProvideHandshakeData( SSL *ssl, size_t num = std::numeric_limits::max()) { MockQUICTransport *transport = TransportFromSSL(ssl); ssl_encryption_level_t level = SSL_quic_read_level(ssl); std::vector data; return transport->ReadHandshakeData(&data, level, num) && SSL_provide_quic_data(ssl, level, data.data(), data.size()); } bool CreateClientAndServer() { client_.reset(SSL_new(client_ctx_.get())); server_.reset(SSL_new(server_ctx_.get())); if (!client_ || !server_) { return false; } SSL_set_connect_state(client_.get()); SSL_set_accept_state(server_.get()); transport_.reset(new MockQUICTransportPair); ex_data_.Set(client_.get(), transport_->client()); ex_data_.Set(server_.get(), transport_->server()); return true; } // CompleteHandshakesForQUIC runs |SSL_do_handshake| on |client_| and // |server_| until each completes once. It returns true on success and false // on failure. bool CompleteHandshakesForQUIC() { bool client_done = false, server_done = false; while (!client_done || !server_done) { if (!client_done) { if (!ProvideHandshakeData(client_.get())) { ADD_FAILURE() << "ProvideHandshakeData(client_) failed"; return false; } int client_ret = SSL_do_handshake(client_.get()); if (client_ret == 1) { client_done = true; } else { EXPECT_EQ(client_ret, -1); EXPECT_EQ(SSL_get_error(client_.get(), client_ret), SSL_ERROR_WANT_READ); } } if (!server_done) { if (!ProvideHandshakeData(server_.get())) { ADD_FAILURE() << "ProvideHandshakeData(server_) failed"; return false; } int server_ret = SSL_do_handshake(server_.get()); if (server_ret == 1) { server_done = true; } else { EXPECT_EQ(server_ret, -1); EXPECT_EQ(SSL_get_error(server_.get(), server_ret), SSL_ERROR_WANT_READ); } } } return true; } bssl::UniquePtr CreateClientSessionForQUIC() { g_last_session = nullptr; SSL_CTX_sess_set_new_cb(client_ctx_.get(), SaveLastSession); if (!CreateClientAndServer() || !CompleteHandshakesForQUIC()) { return nullptr; } // The server sent NewSessionTicket messages in the handshake. if (!ProvideHandshakeData(client_.get()) || !SSL_process_quic_post_handshake(client_.get())) { return nullptr; } return std::move(g_last_session); } void ExpectHandshakeSuccess() { EXPECT_TRUE(transport_->SecretsMatch(ssl_encryption_application)); EXPECT_EQ(ssl_encryption_application, SSL_quic_read_level(client_.get())); EXPECT_EQ(ssl_encryption_application, SSL_quic_write_level(client_.get())); EXPECT_EQ(ssl_encryption_application, SSL_quic_read_level(server_.get())); EXPECT_EQ(ssl_encryption_application, SSL_quic_write_level(server_.get())); EXPECT_FALSE(transport_->client()->has_alert()); EXPECT_FALSE(transport_->server()->has_alert()); // SSL_do_handshake is now idempotent. EXPECT_EQ(SSL_do_handshake(client_.get()), 1); EXPECT_EQ(SSL_do_handshake(server_.get()), 1); } // The following functions may be configured on an |SSL_QUIC_METHOD| as // default implementations. static int SetEncryptionSecretsCallback(SSL *ssl, ssl_encryption_level_t level, const uint8_t *read_key, const uint8_t *write_key, size_t key_len) { return TransportFromSSL(ssl)->SetEncryptionSecrets( level, read_key, write_key, key_len, SSL_get_current_cipher(ssl)); } static int AddHandshakeDataCallback(SSL *ssl, enum ssl_encryption_level_t level, const uint8_t *data, size_t len) { EXPECT_EQ(level, SSL_quic_write_level(ssl)); return TransportFromSSL(ssl)->WriteHandshakeData(level, MakeConstSpan(data, len)); } static int FlushFlightCallback(SSL *ssl) { return 1; } static int SendAlertCallback(SSL *ssl, ssl_encryption_level_t level, uint8_t alert) { EXPECT_EQ(level, SSL_quic_write_level(ssl)); return TransportFromSSL(ssl)->SendAlert(level, alert); } bssl::UniquePtr client_ctx_; bssl::UniquePtr server_ctx_; static UnownedSSLExData ex_data_; std::unique_ptr transport_; bssl::UniquePtr client_; bssl::UniquePtr server_; }; UnownedSSLExData QUICMethodTest::ex_data_; // Test a full handshake and resumption work. TEST_F(QUICMethodTest, Basic) { const SSL_QUIC_METHOD quic_method = { SetEncryptionSecretsCallback, AddHandshakeDataCallback, FlushFlightCallback, SendAlertCallback, }; g_last_session = nullptr; SSL_CTX_set_session_cache_mode(client_ctx_.get(), SSL_SESS_CACHE_BOTH); SSL_CTX_sess_set_new_cb(client_ctx_.get(), SaveLastSession); ASSERT_TRUE(SSL_CTX_set_quic_method(client_ctx_.get(), &quic_method)); ASSERT_TRUE(SSL_CTX_set_quic_method(server_ctx_.get(), &quic_method)); ASSERT_TRUE(CreateClientAndServer()); ASSERT_TRUE(CompleteHandshakesForQUIC()); ExpectHandshakeSuccess(); EXPECT_FALSE(SSL_session_reused(client_.get())); EXPECT_FALSE(SSL_session_reused(server_.get())); // The server sent NewSessionTicket messages in the handshake. EXPECT_FALSE(g_last_session); ASSERT_TRUE(ProvideHandshakeData(client_.get())); EXPECT_EQ(SSL_process_quic_post_handshake(client_.get()), 1); EXPECT_TRUE(g_last_session); // Create a second connection to verify resumption works. ASSERT_TRUE(CreateClientAndServer()); bssl::UniquePtr session = std::move(g_last_session); SSL_set_session(client_.get(), session.get()); ASSERT_TRUE(CompleteHandshakesForQUIC()); ExpectHandshakeSuccess(); EXPECT_TRUE(SSL_session_reused(client_.get())); EXPECT_TRUE(SSL_session_reused(server_.get())); } // Test that HelloRetryRequest in QUIC works. TEST_F(QUICMethodTest, HelloRetryRequest) { const SSL_QUIC_METHOD quic_method = { SetEncryptionSecretsCallback, AddHandshakeDataCallback, FlushFlightCallback, SendAlertCallback, }; ASSERT_TRUE(SSL_CTX_set_quic_method(client_ctx_.get(), &quic_method)); ASSERT_TRUE(SSL_CTX_set_quic_method(server_ctx_.get(), &quic_method)); // BoringSSL predicts the most preferred curve, so using different preferences // will trigger HelloRetryRequest. static const int kClientPrefs[] = {NID_X25519, NID_X9_62_prime256v1}; ASSERT_TRUE(SSL_CTX_set1_curves(client_ctx_.get(), kClientPrefs, OPENSSL_ARRAY_SIZE(kClientPrefs))); static const int kServerPrefs[] = {NID_X9_62_prime256v1, NID_X25519}; ASSERT_TRUE(SSL_CTX_set1_curves(server_ctx_.get(), kServerPrefs, OPENSSL_ARRAY_SIZE(kServerPrefs))); ASSERT_TRUE(CreateClientAndServer()); ASSERT_TRUE(CompleteHandshakesForQUIC()); ExpectHandshakeSuccess(); } TEST_F(QUICMethodTest, ZeroRTTAccept) { const SSL_QUIC_METHOD quic_method = { SetEncryptionSecretsCallback, AddHandshakeDataCallback, FlushFlightCallback, SendAlertCallback, }; SSL_CTX_set_session_cache_mode(client_ctx_.get(), SSL_SESS_CACHE_BOTH); SSL_CTX_set_early_data_enabled(client_ctx_.get(), 1); SSL_CTX_set_early_data_enabled(server_ctx_.get(), 1); ASSERT_TRUE(SSL_CTX_set_quic_method(client_ctx_.get(), &quic_method)); ASSERT_TRUE(SSL_CTX_set_quic_method(server_ctx_.get(), &quic_method)); bssl::UniquePtr session = CreateClientSessionForQUIC(); ASSERT_TRUE(session); ASSERT_TRUE(CreateClientAndServer()); SSL_set_session(client_.get(), session.get()); // The client handshake should return immediately into the early data state. ASSERT_EQ(SSL_do_handshake(client_.get()), 1); EXPECT_TRUE(SSL_in_early_data(client_.get())); // The transport should have keys for sending 0-RTT data. EXPECT_TRUE( transport_->client()->HasSecrets(ssl_encryption_early_data)); // The server will consume the ClientHello and also enter the early data // state. ASSERT_TRUE(ProvideHandshakeData(server_.get())); ASSERT_EQ(SSL_do_handshake(server_.get()), 1); EXPECT_TRUE(SSL_in_early_data(server_.get())); EXPECT_TRUE(transport_->SecretsMatch(ssl_encryption_early_data)); // The transport should have keys for sending half-RTT data. EXPECT_TRUE( transport_->server()->HasSecrets(ssl_encryption_application)); // Finish up the client and server handshakes. ASSERT_TRUE(CompleteHandshakesForQUIC()); // Both sides can now exchange 1-RTT data. ExpectHandshakeSuccess(); EXPECT_TRUE(SSL_session_reused(client_.get())); EXPECT_TRUE(SSL_session_reused(server_.get())); EXPECT_FALSE(SSL_in_early_data(client_.get())); EXPECT_FALSE(SSL_in_early_data(server_.get())); EXPECT_TRUE(SSL_early_data_accepted(client_.get())); EXPECT_TRUE(SSL_early_data_accepted(server_.get())); } TEST_F(QUICMethodTest, ZeroRTTReject) { const SSL_QUIC_METHOD quic_method = { SetEncryptionSecretsCallback, AddHandshakeDataCallback, FlushFlightCallback, SendAlertCallback, }; SSL_CTX_set_session_cache_mode(client_ctx_.get(), SSL_SESS_CACHE_BOTH); SSL_CTX_set_early_data_enabled(client_ctx_.get(), 1); SSL_CTX_set_early_data_enabled(server_ctx_.get(), 1); ASSERT_TRUE(SSL_CTX_set_quic_method(client_ctx_.get(), &quic_method)); ASSERT_TRUE(SSL_CTX_set_quic_method(server_ctx_.get(), &quic_method)); bssl::UniquePtr session = CreateClientSessionForQUIC(); ASSERT_TRUE(session); for (bool reject_hrr : {false, true}) { SCOPED_TRACE(reject_hrr); ASSERT_TRUE(CreateClientAndServer()); if (reject_hrr) { // Configure the server to prefer P-256, which will reject 0-RTT via // HelloRetryRequest. int p256 = NID_X9_62_prime256v1; ASSERT_TRUE(SSL_set1_curves(server_.get(), &p256, 1)); } else { // Disable 0-RTT on the server, so it will reject it. SSL_set_early_data_enabled(server_.get(), 0); } SSL_set_session(client_.get(), session.get()); // The client handshake should return immediately into the early data state. ASSERT_EQ(SSL_do_handshake(client_.get()), 1); EXPECT_TRUE(SSL_in_early_data(client_.get())); // The transport should have keys for sending 0-RTT data. EXPECT_TRUE(transport_->client()->HasSecrets(ssl_encryption_early_data)); // The server will consume the ClientHello, but it will not accept 0-RTT. ASSERT_TRUE(ProvideHandshakeData(server_.get())); ASSERT_EQ(SSL_do_handshake(server_.get()), -1); EXPECT_EQ(SSL_ERROR_WANT_READ, SSL_get_error(server_.get(), -1)); EXPECT_FALSE(SSL_in_early_data(server_.get())); EXPECT_FALSE(transport_->server()->HasSecrets(ssl_encryption_early_data)); // The client consumes the server response and signals 0-RTT rejection. for (;;) { ASSERT_TRUE(ProvideHandshakeData(client_.get())); ASSERT_EQ(-1, SSL_do_handshake(client_.get())); int err = SSL_get_error(client_.get(), -1); if (err == SSL_ERROR_EARLY_DATA_REJECTED) { break; } ASSERT_EQ(SSL_ERROR_WANT_READ, err); } // As in TLS over TCP, 0-RTT rejection is sticky. ASSERT_EQ(-1, SSL_do_handshake(client_.get())); ASSERT_EQ(SSL_ERROR_EARLY_DATA_REJECTED, SSL_get_error(client_.get(), -1)); // Finish up the client and server handshakes. SSL_reset_early_data_reject(client_.get()); ASSERT_TRUE(CompleteHandshakesForQUIC()); // Both sides can now exchange 1-RTT data. ExpectHandshakeSuccess(); EXPECT_TRUE(SSL_session_reused(client_.get())); EXPECT_TRUE(SSL_session_reused(server_.get())); EXPECT_FALSE(SSL_in_early_data(client_.get())); EXPECT_FALSE(SSL_in_early_data(server_.get())); EXPECT_FALSE(SSL_early_data_accepted(client_.get())); EXPECT_FALSE(SSL_early_data_accepted(server_.get())); } } // Test only releasing data to QUIC one byte at a time on request, to maximize // state machine pauses. Additionally, test that existing asynchronous callbacks // still work. TEST_F(QUICMethodTest, Async) { const SSL_QUIC_METHOD quic_method = { SetEncryptionSecretsCallback, AddHandshakeDataCallback, FlushFlightCallback, SendAlertCallback, }; ASSERT_TRUE(SSL_CTX_set_quic_method(client_ctx_.get(), &quic_method)); ASSERT_TRUE(SSL_CTX_set_quic_method(server_ctx_.get(), &quic_method)); ASSERT_TRUE(CreateClientAndServer()); // Install an asynchronous certificate callback. bool cert_cb_ok = false; SSL_set_cert_cb(server_.get(), [](SSL *, void *arg) -> int { return *static_cast(arg) ? 1 : -1; }, &cert_cb_ok); for (;;) { int client_ret = SSL_do_handshake(client_.get()); if (client_ret != 1) { ASSERT_EQ(client_ret, -1); ASSERT_EQ(SSL_get_error(client_.get(), client_ret), SSL_ERROR_WANT_READ); ASSERT_TRUE(ProvideHandshakeData(client_.get(), 1)); } int server_ret = SSL_do_handshake(server_.get()); if (server_ret != 1) { ASSERT_EQ(server_ret, -1); int ssl_err = SSL_get_error(server_.get(), server_ret); switch (ssl_err) { case SSL_ERROR_WANT_READ: ASSERT_TRUE(ProvideHandshakeData(server_.get(), 1)); break; case SSL_ERROR_WANT_X509_LOOKUP: ASSERT_FALSE(cert_cb_ok); cert_cb_ok = true; break; default: FAIL() << "Unexpected SSL_get_error result: " << ssl_err; } } if (client_ret == 1 && server_ret == 1) { break; } } ExpectHandshakeSuccess(); } // Test buffering write data until explicit flushes. TEST_F(QUICMethodTest, Buffered) { struct BufferedFlight { std::vector data[kNumQUICLevels]; }; static UnownedSSLExData buffered_flights; auto add_handshake_data = [](SSL *ssl, enum ssl_encryption_level_t level, const uint8_t *data, size_t len) -> int { BufferedFlight *flight = buffered_flights.Get(ssl); flight->data[level].insert(flight->data[level].end(), data, data + len); return 1; }; auto flush_flight = [](SSL *ssl) -> int { BufferedFlight *flight = buffered_flights.Get(ssl); for (size_t level = 0; level < kNumQUICLevels; level++) { if (!flight->data[level].empty()) { if (!TransportFromSSL(ssl)->WriteHandshakeData( static_cast(level), flight->data[level])) { return 0; } flight->data[level].clear(); } } return 1; }; const SSL_QUIC_METHOD quic_method = { SetEncryptionSecretsCallback, add_handshake_data, flush_flight, SendAlertCallback, }; ASSERT_TRUE(SSL_CTX_set_quic_method(client_ctx_.get(), &quic_method)); ASSERT_TRUE(SSL_CTX_set_quic_method(server_ctx_.get(), &quic_method)); ASSERT_TRUE(CreateClientAndServer()); BufferedFlight client_flight, server_flight; buffered_flights.Set(client_.get(), &client_flight); buffered_flights.Set(server_.get(), &server_flight); ASSERT_TRUE(CompleteHandshakesForQUIC()); ExpectHandshakeSuccess(); } // Test that excess data at one level is rejected. That is, if a single // |SSL_provide_quic_data| call included both ServerHello and // EncryptedExtensions in a single chunk, BoringSSL notices and rejects this on // key change. TEST_F(QUICMethodTest, ExcessProvidedData) { auto add_handshake_data = [](SSL *ssl, enum ssl_encryption_level_t level, const uint8_t *data, size_t len) -> int { // Switch everything to the initial level. return TransportFromSSL(ssl)->WriteHandshakeData(ssl_encryption_initial, MakeConstSpan(data, len)); }; const SSL_QUIC_METHOD quic_method = { SetEncryptionSecretsCallback, add_handshake_data, FlushFlightCallback, SendAlertCallback, }; ASSERT_TRUE(SSL_CTX_set_quic_method(client_ctx_.get(), &quic_method)); ASSERT_TRUE(SSL_CTX_set_quic_method(server_ctx_.get(), &quic_method)); ASSERT_TRUE(CreateClientAndServer()); // Send the ClientHello and ServerHello through Finished. ASSERT_EQ(SSL_do_handshake(client_.get()), -1); ASSERT_EQ(SSL_get_error(client_.get(), -1), SSL_ERROR_WANT_READ); ASSERT_TRUE(ProvideHandshakeData(server_.get())); ASSERT_EQ(SSL_do_handshake(server_.get()), -1); ASSERT_EQ(SSL_get_error(server_.get(), -1), SSL_ERROR_WANT_READ); // The client is still waiting for the ServerHello at initial // encryption. ASSERT_EQ(ssl_encryption_initial, SSL_quic_read_level(client_.get())); // |add_handshake_data| incorrectly wrote everything at the initial level, so // this queues up ServerHello through Finished in one chunk. ASSERT_TRUE(ProvideHandshakeData(client_.get())); // The client reads ServerHello successfully, but then rejects the buffered // EncryptedExtensions on key change. ASSERT_EQ(SSL_do_handshake(client_.get()), -1); ASSERT_EQ(SSL_get_error(client_.get(), -1), SSL_ERROR_SSL); uint32_t err = ERR_get_error(); EXPECT_EQ(ERR_GET_LIB(err), ERR_LIB_SSL); EXPECT_EQ(ERR_GET_REASON(err), SSL_R_BUFFERED_MESSAGES_ON_CIPHER_CHANGE); // The client sends an alert in response to this. ASSERT_TRUE(transport_->client()->has_alert()); EXPECT_EQ(transport_->client()->alert_level(), ssl_encryption_initial); EXPECT_EQ(transport_->client()->alert(), SSL_AD_UNEXPECTED_MESSAGE); // Sanity-check client did get far enough to process the ServerHello and // install keys. EXPECT_TRUE(transport_->client()->HasSecrets(ssl_encryption_handshake)); } // Test that |SSL_provide_quic_data| will reject data at the wrong level. TEST_F(QUICMethodTest, ProvideWrongLevel) { const SSL_QUIC_METHOD quic_method = { SetEncryptionSecretsCallback, AddHandshakeDataCallback, FlushFlightCallback, SendAlertCallback, }; ASSERT_TRUE(SSL_CTX_set_quic_method(client_ctx_.get(), &quic_method)); ASSERT_TRUE(SSL_CTX_set_quic_method(server_ctx_.get(), &quic_method)); ASSERT_TRUE(CreateClientAndServer()); // Send the ClientHello and ServerHello through Finished. ASSERT_EQ(SSL_do_handshake(client_.get()), -1); ASSERT_EQ(SSL_get_error(client_.get(), -1), SSL_ERROR_WANT_READ); ASSERT_TRUE(ProvideHandshakeData(server_.get())); ASSERT_EQ(SSL_do_handshake(server_.get()), -1); ASSERT_EQ(SSL_get_error(server_.get(), -1), SSL_ERROR_WANT_READ); // The client is still waiting for the ServerHello at initial // encryption. ASSERT_EQ(ssl_encryption_initial, SSL_quic_read_level(client_.get())); // Data cannot be provided at the next level. std::vector data; ASSERT_TRUE( transport_->client()->ReadHandshakeData(&data, ssl_encryption_initial)); ASSERT_FALSE(SSL_provide_quic_data(client_.get(), ssl_encryption_handshake, data.data(), data.size())); ERR_clear_error(); // Progress to EncryptedExtensions. ASSERT_TRUE(SSL_provide_quic_data(client_.get(), ssl_encryption_initial, data.data(), data.size())); ASSERT_EQ(SSL_do_handshake(client_.get()), -1); ASSERT_EQ(SSL_get_error(client_.get(), -1), SSL_ERROR_WANT_READ); ASSERT_EQ(ssl_encryption_handshake, SSL_quic_read_level(client_.get())); // Data cannot be provided at the previous level. ASSERT_TRUE( transport_->client()->ReadHandshakeData(&data, ssl_encryption_handshake)); ASSERT_FALSE(SSL_provide_quic_data(client_.get(), ssl_encryption_initial, data.data(), data.size())); } TEST_F(QUICMethodTest, TooMuchData) { const SSL_QUIC_METHOD quic_method = { SetEncryptionSecretsCallback, AddHandshakeDataCallback, FlushFlightCallback, SendAlertCallback, }; ASSERT_TRUE(SSL_CTX_set_quic_method(client_ctx_.get(), &quic_method)); ASSERT_TRUE(SSL_CTX_set_quic_method(server_ctx_.get(), &quic_method)); ASSERT_TRUE(CreateClientAndServer()); size_t limit = SSL_quic_max_handshake_flight_len(client_.get(), ssl_encryption_initial); uint8_t b = 0; for (size_t i = 0; i < limit; i++) { ASSERT_TRUE( SSL_provide_quic_data(client_.get(), ssl_encryption_initial, &b, 1)); } EXPECT_FALSE( SSL_provide_quic_data(client_.get(), ssl_encryption_initial, &b, 1)); } // Provide invalid post-handshake data. TEST_F(QUICMethodTest, BadPostHandshake) { const SSL_QUIC_METHOD quic_method = { SetEncryptionSecretsCallback, AddHandshakeDataCallback, FlushFlightCallback, SendAlertCallback, }; g_last_session = nullptr; SSL_CTX_set_session_cache_mode(client_ctx_.get(), SSL_SESS_CACHE_BOTH); SSL_CTX_sess_set_new_cb(client_ctx_.get(), SaveLastSession); ASSERT_TRUE(SSL_CTX_set_quic_method(client_ctx_.get(), &quic_method)); ASSERT_TRUE(SSL_CTX_set_quic_method(server_ctx_.get(), &quic_method)); ASSERT_TRUE(CreateClientAndServer()); ASSERT_TRUE(CompleteHandshakesForQUIC()); EXPECT_EQ(SSL_do_handshake(client_.get()), 1); EXPECT_EQ(SSL_do_handshake(server_.get()), 1); EXPECT_TRUE(transport_->SecretsMatch(ssl_encryption_application)); EXPECT_FALSE(transport_->client()->has_alert()); EXPECT_FALSE(transport_->server()->has_alert()); // Junk sent as part of post-handshake data should cause an error. uint8_t kJunk[] = {0x17, 0x0, 0x0, 0x4, 0xB, 0xE, 0xE, 0xF}; ASSERT_TRUE(SSL_provide_quic_data(client_.get(), ssl_encryption_application, kJunk, sizeof(kJunk))); EXPECT_EQ(SSL_process_quic_post_handshake(client_.get()), 0); } extern "C" { int BORINGSSL_enum_c_type_test(void); } TEST(SSLTest, EnumTypes) { EXPECT_EQ(sizeof(int), sizeof(ssl_private_key_result_t)); EXPECT_EQ(1, BORINGSSL_enum_c_type_test()); } TEST_P(SSLVersionTest, DoubleSSLError) { // Connect the inner SSL connections. ASSERT_TRUE(Connect()); // Make a pair of |BIO|s which wrap |client_| and |server_|. UniquePtr bio_method(BIO_meth_new(0, nullptr)); ASSERT_TRUE(bio_method); ASSERT_TRUE(BIO_meth_set_read( bio_method.get(), [](BIO *bio, char *out, int len) -> int { SSL *ssl = static_cast(BIO_get_data(bio)); int ret = SSL_read(ssl, out, len); int ssl_ret = SSL_get_error(ssl, ret); if (ssl_ret == SSL_ERROR_WANT_READ) { BIO_set_retry_read(bio); } return ret; })); ASSERT_TRUE(BIO_meth_set_write( bio_method.get(), [](BIO *bio, const char *in, int len) -> int { SSL *ssl = static_cast(BIO_get_data(bio)); int ret = SSL_write(ssl, in, len); int ssl_ret = SSL_get_error(ssl, ret); if (ssl_ret == SSL_ERROR_WANT_WRITE) { BIO_set_retry_write(bio); } return ret; })); ASSERT_TRUE(BIO_meth_set_ctrl( bio_method.get(), [](BIO *bio, int cmd, long larg, void *parg) -> long { // |SSL| objects require |BIO_flush| support. if (cmd == BIO_CTRL_FLUSH) { return 1; } return 0; })); UniquePtr client_bio(BIO_new(bio_method.get())); ASSERT_TRUE(client_bio); BIO_set_data(client_bio.get(), client_.get()); BIO_set_init(client_bio.get(), 1); UniquePtr server_bio(BIO_new(bio_method.get())); ASSERT_TRUE(server_bio); BIO_set_data(server_bio.get(), server_.get()); BIO_set_init(server_bio.get(), 1); // Wrap the inner connections in another layer of SSL. UniquePtr client_outer(SSL_new(client_ctx_.get())); ASSERT_TRUE(client_outer); SSL_set_connect_state(client_outer.get()); SSL_set_bio(client_outer.get(), client_bio.get(), client_bio.get()); client_bio.release(); // |SSL_set_bio| takes ownership. UniquePtr server_outer(SSL_new(server_ctx_.get())); ASSERT_TRUE(server_outer); SSL_set_accept_state(server_outer.get()); SSL_set_bio(server_outer.get(), server_bio.get(), server_bio.get()); server_bio.release(); // |SSL_set_bio| takes ownership. // Configure |client_outer| to reject the server certificate. SSL_set_custom_verify( client_outer.get(), SSL_VERIFY_PEER, [](SSL *ssl, uint8_t *out_alert) -> ssl_verify_result_t { return ssl_verify_invalid; }); for (;;) { int client_ret = SSL_do_handshake(client_outer.get()); int client_err = SSL_get_error(client_outer.get(), client_ret); if (client_err != SSL_ERROR_WANT_READ && client_err != SSL_ERROR_WANT_WRITE) { // The client handshake should terminate on a certificate verification // error. EXPECT_EQ(SSL_ERROR_SSL, client_err); uint32_t err = ERR_peek_error(); EXPECT_EQ(ERR_LIB_SSL, ERR_GET_LIB(err)); EXPECT_EQ(SSL_R_CERTIFICATE_VERIFY_FAILED, ERR_GET_REASON(err)); break; } // Run the server handshake and continue. int server_ret = SSL_do_handshake(server_outer.get()); int server_err = SSL_get_error(server_outer.get(), server_ret); ASSERT_TRUE(server_err == SSL_ERROR_NONE || server_err == SSL_ERROR_WANT_READ || server_err == SSL_ERROR_WANT_WRITE); } } } // namespace BSSL_NAMESPACE_END