/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) * All rights reserved. * * This package is an SSL implementation written * by Eric Young (eay@cryptsoft.com). * The implementation was written so as to conform with Netscapes SSL. * * This library is free for commercial and non-commercial use as long as * the following conditions are aheared to. The following conditions * apply to all code found in this distribution, be it the RC4, RSA, * lhash, DES, etc., code; not just the SSL code. The SSL documentation * included with this distribution is covered by the same copyright terms * except that the holder is Tim Hudson (tjh@cryptsoft.com). * * Copyright remains Eric Young's, and as such any Copyright notices in * the code are not to be removed. * If this package is used in a product, Eric Young should be given attribution * as the author of the parts of the library used. * This can be in the form of a textual message at program startup or * in documentation (online or textual) provided with the package. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * "This product includes cryptographic software written by * Eric Young (eay@cryptsoft.com)" * The word 'cryptographic' can be left out if the rouines from the library * being used are not cryptographic related :-). * 4. If you include any Windows specific code (or a derivative thereof) from * the apps directory (application code) you must include an acknowledgement: * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" * * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * The licence and distribution terms for any publically available version or * derivative of this code cannot be changed. i.e. this code cannot simply be * copied and put under another distribution licence * [including the GNU Public Licence.] */ /* ==================================================================== * Copyright (c) 1998-2006 The OpenSSL Project. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * 3. All advertising materials mentioning features or use of this * software must display the following acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" * * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to * endorse or promote products derived from this software without * prior written permission. For written permission, please contact * openssl-core@openssl.org. * * 5. Products derived from this software may not be called "OpenSSL" * nor may "OpenSSL" appear in their names without prior written * permission of the OpenSSL Project. * * 6. Redistributions of any form whatsoever must retain the following * acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit (http://www.openssl.org/)" * * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. * ==================================================================== * * This product includes cryptographic software written by Eric Young * (eay@cryptsoft.com). This product includes software written by Tim * Hudson (tjh@cryptsoft.com). * */ /* ==================================================================== * Copyright 2005 Nokia. All rights reserved. * * The portions of the attached software ("Contribution") is developed by * Nokia Corporation and is licensed pursuant to the OpenSSL open source * license. * * The Contribution, originally written by Mika Kousa and Pasi Eronen of * Nokia Corporation, consists of the "PSK" (Pre-Shared Key) ciphersuites * support (see RFC 4279) to OpenSSL. * * No patent licenses or other rights except those expressly stated in * the OpenSSL open source license shall be deemed granted or received * expressly, by implication, estoppel, or otherwise. * * No assurances are provided by Nokia that the Contribution does not * infringe the patent or other intellectual property rights of any third * party or that the license provides you with all the necessary rights * to make use of the Contribution. * * THE SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. IN * ADDITION TO THE DISCLAIMERS INCLUDED IN THE LICENSE, NOKIA * SPECIFICALLY DISCLAIMS ANY LIABILITY FOR CLAIMS BROUGHT BY YOU OR ANY * OTHER ENTITY BASED ON INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OR * OTHERWISE. */ #include #include #include #include #include #include #include #include #include #include #include "internal.h" #include "../crypto/internal.h" BSSL_NAMESPACE_BEGIN // The address of this is a magic value, a pointer to which is returned by // SSL_magic_pending_session_ptr(). It allows a session callback to indicate // that it needs to asynchronously fetch session information. static const char g_pending_session_magic = 0; static CRYPTO_EX_DATA_CLASS g_ex_data_class = CRYPTO_EX_DATA_CLASS_INIT_WITH_APP_DATA; static void SSL_SESSION_list_remove(SSL_CTX *ctx, SSL_SESSION *session); static void SSL_SESSION_list_add(SSL_CTX *ctx, SSL_SESSION *session); static int remove_session_lock(SSL_CTX *ctx, SSL_SESSION *session, int lock); UniquePtr ssl_session_new(const SSL_X509_METHOD *x509_method) { return MakeUnique(x509_method); } uint32_t ssl_hash_session_id(Span session_id) { // Take the first four bytes of |session_id|. Session IDs are generated by the // server randomly, so we can assume even using the first four bytes results // in a good distribution. uint8_t tmp_storage[sizeof(uint32_t)]; if (session_id.size() < sizeof(tmp_storage)) { OPENSSL_memset(tmp_storage, 0, sizeof(tmp_storage)); OPENSSL_memcpy(tmp_storage, session_id.data(), session_id.size()); session_id = tmp_storage; } uint32_t hash = ((uint32_t)session_id[0]) | ((uint32_t)session_id[1] << 8) | ((uint32_t)session_id[2] << 16) | ((uint32_t)session_id[3] << 24); return hash; } UniquePtr SSL_SESSION_dup(SSL_SESSION *session, int dup_flags) { UniquePtr new_session = ssl_session_new(session->x509_method); if (!new_session) { return nullptr; } new_session->is_server = session->is_server; new_session->ssl_version = session->ssl_version; new_session->sid_ctx_length = session->sid_ctx_length; OPENSSL_memcpy(new_session->sid_ctx, session->sid_ctx, session->sid_ctx_length); // Copy the key material. new_session->master_key_length = session->master_key_length; OPENSSL_memcpy(new_session->master_key, session->master_key, session->master_key_length); new_session->cipher = session->cipher; // Copy authentication state. if (session->psk_identity != nullptr) { new_session->psk_identity.reset(BUF_strdup(session->psk_identity.get())); if (new_session->psk_identity == nullptr) { return nullptr; } } if (session->certs != nullptr) { auto buf_up_ref = [](CRYPTO_BUFFER *buf) { CRYPTO_BUFFER_up_ref(buf); return buf; }; new_session->certs.reset(sk_CRYPTO_BUFFER_deep_copy( session->certs.get(), buf_up_ref, CRYPTO_BUFFER_free)); if (new_session->certs == nullptr) { return nullptr; } } if (!session->x509_method->session_dup(new_session.get(), session)) { return nullptr; } new_session->verify_result = session->verify_result; new_session->ocsp_response = UpRef(session->ocsp_response); new_session->signed_cert_timestamp_list = UpRef(session->signed_cert_timestamp_list); OPENSSL_memcpy(new_session->peer_sha256, session->peer_sha256, SHA256_DIGEST_LENGTH); new_session->peer_sha256_valid = session->peer_sha256_valid; new_session->peer_signature_algorithm = session->peer_signature_algorithm; new_session->timeout = session->timeout; new_session->auth_timeout = session->auth_timeout; new_session->time = session->time; // Copy non-authentication connection properties. if (dup_flags & SSL_SESSION_INCLUDE_NONAUTH) { new_session->session_id_length = session->session_id_length; OPENSSL_memcpy(new_session->session_id, session->session_id, session->session_id_length); new_session->group_id = session->group_id; OPENSSL_memcpy(new_session->original_handshake_hash, session->original_handshake_hash, session->original_handshake_hash_len); new_session->original_handshake_hash_len = session->original_handshake_hash_len; new_session->ticket_lifetime_hint = session->ticket_lifetime_hint; new_session->ticket_age_add = session->ticket_age_add; new_session->ticket_max_early_data = session->ticket_max_early_data; new_session->extended_master_secret = session->extended_master_secret; if (!new_session->early_alpn.CopyFrom(session->early_alpn)) { return nullptr; } } // Copy the ticket. if (dup_flags & SSL_SESSION_INCLUDE_TICKET && !new_session->ticket.CopyFrom(session->ticket)) { return nullptr; } // The new_session does not get a copy of the ex_data. new_session->not_resumable = true; return new_session; } void ssl_session_rebase_time(SSL *ssl, SSL_SESSION *session) { struct OPENSSL_timeval now; ssl_get_current_time(ssl, &now); // To avoid overflows and underflows, if we've gone back in time, update the // time, but mark the session expired. if (session->time > now.tv_sec) { session->time = now.tv_sec; session->timeout = 0; session->auth_timeout = 0; return; } // Adjust the session time and timeouts. If the session has already expired, // clamp the timeouts at zero. uint64_t delta = now.tv_sec - session->time; session->time = now.tv_sec; if (session->timeout < delta) { session->timeout = 0; } else { session->timeout -= delta; } if (session->auth_timeout < delta) { session->auth_timeout = 0; } else { session->auth_timeout -= delta; } } void ssl_session_renew_timeout(SSL *ssl, SSL_SESSION *session, uint32_t timeout) { // Rebase the timestamp relative to the current time so |timeout| is measured // correctly. ssl_session_rebase_time(ssl, session); if (session->timeout > timeout) { return; } session->timeout = timeout; if (session->timeout > session->auth_timeout) { session->timeout = session->auth_timeout; } } uint16_t ssl_session_protocol_version(const SSL_SESSION *session) { uint16_t ret; if (!ssl_protocol_version_from_wire(&ret, session->ssl_version)) { // An |SSL_SESSION| will never have an invalid version. This is enforced by // the parser. assert(0); return 0; } return ret; } const EVP_MD *ssl_session_get_digest(const SSL_SESSION *session) { return ssl_get_handshake_digest(ssl_session_protocol_version(session), session->cipher); } int ssl_get_new_session(SSL_HANDSHAKE *hs, int is_server) { SSL *const ssl = hs->ssl; if (ssl->mode & SSL_MODE_NO_SESSION_CREATION) { OPENSSL_PUT_ERROR(SSL, SSL_R_SESSION_MAY_NOT_BE_CREATED); return 0; } UniquePtr session = ssl_session_new(ssl->ctx->x509_method); if (session == NULL) { return 0; } session->is_server = is_server; session->ssl_version = ssl->version; // Fill in the time from the |SSL_CTX|'s clock. struct OPENSSL_timeval now; ssl_get_current_time(ssl, &now); session->time = now.tv_sec; uint16_t version = ssl_protocol_version(ssl); if (version >= TLS1_3_VERSION) { // TLS 1.3 uses tickets as authenticators, so we are willing to use them for // longer. session->timeout = ssl->session_ctx->session_psk_dhe_timeout; session->auth_timeout = SSL_DEFAULT_SESSION_AUTH_TIMEOUT; } else { // TLS 1.2 resumption does not incorporate new key material, so we use a // much shorter timeout. session->timeout = ssl->session_ctx->session_timeout; session->auth_timeout = ssl->session_ctx->session_timeout; } if (is_server) { if (hs->ticket_expected || version >= TLS1_3_VERSION) { // Don't set session IDs for sessions resumed with tickets. This will keep // them out of the session cache. session->session_id_length = 0; } else { session->session_id_length = SSL3_SSL_SESSION_ID_LENGTH; if (!RAND_bytes(session->session_id, session->session_id_length)) { return 0; } } } else { session->session_id_length = 0; } if (hs->config->cert->sid_ctx_length > sizeof(session->sid_ctx)) { OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); return 0; } OPENSSL_memcpy(session->sid_ctx, hs->config->cert->sid_ctx, hs->config->cert->sid_ctx_length); session->sid_ctx_length = hs->config->cert->sid_ctx_length; // The session is marked not resumable until it is completely filled in. session->not_resumable = true; session->verify_result = X509_V_ERR_INVALID_CALL; hs->new_session = std::move(session); ssl_set_session(ssl, NULL); return 1; } int ssl_ctx_rotate_ticket_encryption_key(SSL_CTX *ctx) { OPENSSL_timeval now; ssl_ctx_get_current_time(ctx, &now); { // Avoid acquiring a write lock in the common case (i.e. a non-default key // is used or the default keys have not expired yet). MutexReadLock lock(&ctx->lock); if (ctx->ticket_key_current && (ctx->ticket_key_current->next_rotation_tv_sec == 0 || ctx->ticket_key_current->next_rotation_tv_sec > now.tv_sec) && (!ctx->ticket_key_prev || ctx->ticket_key_prev->next_rotation_tv_sec > now.tv_sec)) { return 1; } } MutexWriteLock lock(&ctx->lock); if (!ctx->ticket_key_current || (ctx->ticket_key_current->next_rotation_tv_sec != 0 && ctx->ticket_key_current->next_rotation_tv_sec <= now.tv_sec)) { // The current key has not been initialized or it is expired. auto new_key = bssl::MakeUnique(); if (!new_key) { return 0; } RAND_bytes(new_key->name, 16); RAND_bytes(new_key->hmac_key, 16); RAND_bytes(new_key->aes_key, 16); new_key->next_rotation_tv_sec = now.tv_sec + SSL_DEFAULT_TICKET_KEY_ROTATION_INTERVAL; if (ctx->ticket_key_current) { // The current key expired. Rotate it to prev and bump up its rotation // timestamp. Note that even with the new rotation time it may still be // expired and get dropped below. ctx->ticket_key_current->next_rotation_tv_sec += SSL_DEFAULT_TICKET_KEY_ROTATION_INTERVAL; ctx->ticket_key_prev = std::move(ctx->ticket_key_current); } ctx->ticket_key_current = std::move(new_key); } // Drop an expired prev key. if (ctx->ticket_key_prev && ctx->ticket_key_prev->next_rotation_tv_sec <= now.tv_sec) { ctx->ticket_key_prev.reset(); } return 1; } static int ssl_encrypt_ticket_with_cipher_ctx(SSL_HANDSHAKE *hs, CBB *out, const uint8_t *session_buf, size_t session_len) { ScopedEVP_CIPHER_CTX ctx; ScopedHMAC_CTX hctx; // If the session is too long, emit a dummy value rather than abort the // connection. static const size_t kMaxTicketOverhead = 16 + EVP_MAX_IV_LENGTH + EVP_MAX_BLOCK_LENGTH + EVP_MAX_MD_SIZE; if (session_len > 0xffff - kMaxTicketOverhead) { static const char kTicketPlaceholder[] = "TICKET TOO LARGE"; return CBB_add_bytes(out, (const uint8_t *)kTicketPlaceholder, strlen(kTicketPlaceholder)); } // Initialize HMAC and cipher contexts. If callback present it does all the // work otherwise use generated values from parent ctx. SSL_CTX *tctx = hs->ssl->session_ctx.get(); uint8_t iv[EVP_MAX_IV_LENGTH]; uint8_t key_name[16]; if (tctx->ticket_key_cb != NULL) { if (tctx->ticket_key_cb(hs->ssl, key_name, iv, ctx.get(), hctx.get(), 1 /* encrypt */) < 0) { return 0; } } else { // Rotate ticket key if necessary. if (!ssl_ctx_rotate_ticket_encryption_key(tctx)) { return 0; } MutexReadLock lock(&tctx->lock); if (!RAND_bytes(iv, 16) || !EVP_EncryptInit_ex(ctx.get(), EVP_aes_128_cbc(), NULL, tctx->ticket_key_current->aes_key, iv) || !HMAC_Init_ex(hctx.get(), tctx->ticket_key_current->hmac_key, 16, tlsext_tick_md(), NULL)) { return 0; } OPENSSL_memcpy(key_name, tctx->ticket_key_current->name, 16); } uint8_t *ptr; if (!CBB_add_bytes(out, key_name, 16) || !CBB_add_bytes(out, iv, EVP_CIPHER_CTX_iv_length(ctx.get())) || !CBB_reserve(out, &ptr, session_len + EVP_MAX_BLOCK_LENGTH)) { return 0; } size_t total = 0; #if defined(BORINGSSL_UNSAFE_FUZZER_MODE) OPENSSL_memcpy(ptr, session_buf, session_len); total = session_len; #else int len; if (!EVP_EncryptUpdate(ctx.get(), ptr + total, &len, session_buf, session_len)) { return 0; } total += len; if (!EVP_EncryptFinal_ex(ctx.get(), ptr + total, &len)) { return 0; } total += len; #endif if (!CBB_did_write(out, total)) { return 0; } unsigned hlen; if (!HMAC_Update(hctx.get(), CBB_data(out), CBB_len(out)) || !CBB_reserve(out, &ptr, EVP_MAX_MD_SIZE) || !HMAC_Final(hctx.get(), ptr, &hlen) || !CBB_did_write(out, hlen)) { return 0; } return 1; } static int ssl_encrypt_ticket_with_method(SSL_HANDSHAKE *hs, CBB *out, const uint8_t *session_buf, size_t session_len) { SSL *const ssl = hs->ssl; const SSL_TICKET_AEAD_METHOD *method = ssl->session_ctx->ticket_aead_method; const size_t max_overhead = method->max_overhead(ssl); const size_t max_out = session_len + max_overhead; if (max_out < max_overhead) { OPENSSL_PUT_ERROR(SSL, ERR_R_OVERFLOW); return 0; } uint8_t *ptr; if (!CBB_reserve(out, &ptr, max_out)) { return 0; } size_t out_len; if (!method->seal(ssl, ptr, &out_len, max_out, session_buf, session_len)) { OPENSSL_PUT_ERROR(SSL, SSL_R_TICKET_ENCRYPTION_FAILED); return 0; } if (!CBB_did_write(out, out_len)) { return 0; } return 1; } int ssl_encrypt_ticket(SSL_HANDSHAKE *hs, CBB *out, const SSL_SESSION *session) { // Serialize the SSL_SESSION to be encoded into the ticket. uint8_t *session_buf = NULL; size_t session_len; if (!SSL_SESSION_to_bytes_for_ticket(session, &session_buf, &session_len)) { return -1; } int ret = 0; if (hs->ssl->session_ctx->ticket_aead_method) { ret = ssl_encrypt_ticket_with_method(hs, out, session_buf, session_len); } else { ret = ssl_encrypt_ticket_with_cipher_ctx(hs, out, session_buf, session_len); } OPENSSL_free(session_buf); return ret; } int ssl_session_is_context_valid(const SSL_HANDSHAKE *hs, const SSL_SESSION *session) { if (session == NULL) { return 0; } return session->sid_ctx_length == hs->config->cert->sid_ctx_length && OPENSSL_memcmp(session->sid_ctx, hs->config->cert->sid_ctx, hs->config->cert->sid_ctx_length) == 0; } int ssl_session_is_time_valid(const SSL *ssl, const SSL_SESSION *session) { if (session == NULL) { return 0; } struct OPENSSL_timeval now; ssl_get_current_time(ssl, &now); // Reject tickets from the future to avoid underflow. if (now.tv_sec < session->time) { return 0; } return session->timeout > now.tv_sec - session->time; } int ssl_session_is_resumable(const SSL_HANDSHAKE *hs, const SSL_SESSION *session) { const SSL *const ssl = hs->ssl; return ssl_session_is_context_valid(hs, session) && // The session must have been created by the same type of end point as // we're now using it with. ssl->server == session->is_server && // The session must not be expired. ssl_session_is_time_valid(ssl, session) && /* Only resume if the session's version matches the negotiated * version. */ ssl->version == session->ssl_version && // Only resume if the session's cipher matches the negotiated one. hs->new_cipher == session->cipher && // If the session contains a client certificate (either the full // certificate or just the hash) then require that the form of the // certificate matches the current configuration. ((sk_CRYPTO_BUFFER_num(session->certs.get()) == 0 && !session->peer_sha256_valid) || session->peer_sha256_valid == hs->config->retain_only_sha256_of_client_certs); } // ssl_lookup_session looks up |session_id| in the session cache and sets // |*out_session| to an |SSL_SESSION| object if found. static enum ssl_hs_wait_t ssl_lookup_session( SSL_HANDSHAKE *hs, UniquePtr *out_session, Span session_id) { SSL *const ssl = hs->ssl; out_session->reset(); if (session_id.empty() || session_id.size() > SSL_MAX_SSL_SESSION_ID_LENGTH) { return ssl_hs_ok; } UniquePtr session; // Try the internal cache, if it exists. if (!(ssl->session_ctx->session_cache_mode & SSL_SESS_CACHE_NO_INTERNAL_LOOKUP)) { uint32_t hash = ssl_hash_session_id(session_id); auto cmp = [](const void *key, const SSL_SESSION *sess) -> int { Span key_id = *reinterpret_cast *>(key); Span sess_id = MakeConstSpan(sess->session_id, sess->session_id_length); return key_id == sess_id ? 0 : 1; }; MutexReadLock lock(&ssl->session_ctx->lock); // |lh_SSL_SESSION_retrieve_key| returns a non-owning pointer. session = UpRef(lh_SSL_SESSION_retrieve_key(ssl->session_ctx->sessions, &session_id, hash, cmp)); // TODO(davidben): This should probably move it to the front of the list. } // Fall back to the external cache, if it exists. if (!session && ssl->session_ctx->get_session_cb != nullptr) { int copy = 1; session.reset(ssl->session_ctx->get_session_cb(ssl, session_id.data(), session_id.size(), ©)); if (!session) { return ssl_hs_ok; } if (session.get() == SSL_magic_pending_session_ptr()) { session.release(); // This pointer is not actually owned. return ssl_hs_pending_session; } // Increment reference count now if the session callback asks us to do so // (note that if the session structures returned by the callback are shared // between threads, it must handle the reference count itself [i.e. copy == // 0], or things won't be thread-safe). if (copy) { SSL_SESSION_up_ref(session.get()); } // Add the externally cached session to the internal cache if necessary. if (!(ssl->session_ctx->session_cache_mode & SSL_SESS_CACHE_NO_INTERNAL_STORE)) { SSL_CTX_add_session(ssl->session_ctx.get(), session.get()); } } if (session && !ssl_session_is_time_valid(ssl, session.get())) { // The session was from the cache, so remove it. SSL_CTX_remove_session(ssl->session_ctx.get(), session.get()); session.reset(); } *out_session = std::move(session); return ssl_hs_ok; } enum ssl_hs_wait_t ssl_get_prev_session(SSL_HANDSHAKE *hs, UniquePtr *out_session, bool *out_tickets_supported, bool *out_renew_ticket, const SSL_CLIENT_HELLO *client_hello) { // This is used only by servers. assert(hs->ssl->server); UniquePtr session; bool renew_ticket = false; // If tickets are disabled, always behave as if no tickets are present. CBS ticket; const bool tickets_supported = !(SSL_get_options(hs->ssl) & SSL_OP_NO_TICKET) && ssl_client_hello_get_extension(client_hello, &ticket, TLSEXT_TYPE_session_ticket); if (tickets_supported && CBS_len(&ticket) != 0) { switch (ssl_process_ticket(hs, &session, &renew_ticket, ticket, MakeConstSpan(client_hello->session_id, client_hello->session_id_len))) { case ssl_ticket_aead_success: break; case ssl_ticket_aead_ignore_ticket: assert(!session); break; case ssl_ticket_aead_error: return ssl_hs_error; case ssl_ticket_aead_retry: return ssl_hs_pending_ticket; } } else { // The client didn't send a ticket, so the session ID is a real ID. enum ssl_hs_wait_t lookup_ret = ssl_lookup_session( hs, &session, MakeConstSpan(client_hello->session_id, client_hello->session_id_len)); if (lookup_ret != ssl_hs_ok) { return lookup_ret; } } *out_session = std::move(session); *out_tickets_supported = tickets_supported; *out_renew_ticket = renew_ticket; return ssl_hs_ok; } static int remove_session_lock(SSL_CTX *ctx, SSL_SESSION *session, int lock) { int ret = 0; if (session != NULL && session->session_id_length != 0) { if (lock) { CRYPTO_MUTEX_lock_write(&ctx->lock); } SSL_SESSION *found_session = lh_SSL_SESSION_retrieve(ctx->sessions, session); if (found_session == session) { ret = 1; found_session = lh_SSL_SESSION_delete(ctx->sessions, session); SSL_SESSION_list_remove(ctx, session); } if (lock) { CRYPTO_MUTEX_unlock_write(&ctx->lock); } if (ret) { if (ctx->remove_session_cb != NULL) { ctx->remove_session_cb(ctx, found_session); } SSL_SESSION_free(found_session); } } return ret; } void ssl_set_session(SSL *ssl, SSL_SESSION *session) { if (ssl->session.get() == session) { return; } ssl->session = UpRef(session); } // locked by SSL_CTX in the calling function static void SSL_SESSION_list_remove(SSL_CTX *ctx, SSL_SESSION *session) { if (session->next == NULL || session->prev == NULL) { return; } if (session->next == (SSL_SESSION *)&ctx->session_cache_tail) { // last element in list if (session->prev == (SSL_SESSION *)&ctx->session_cache_head) { // only one element in list ctx->session_cache_head = NULL; ctx->session_cache_tail = NULL; } else { ctx->session_cache_tail = session->prev; session->prev->next = (SSL_SESSION *)&(ctx->session_cache_tail); } } else { if (session->prev == (SSL_SESSION *)&ctx->session_cache_head) { // first element in list ctx->session_cache_head = session->next; session->next->prev = (SSL_SESSION *)&(ctx->session_cache_head); } else { // middle of list session->next->prev = session->prev; session->prev->next = session->next; } } session->prev = session->next = NULL; } static void SSL_SESSION_list_add(SSL_CTX *ctx, SSL_SESSION *session) { if (session->next != NULL && session->prev != NULL) { SSL_SESSION_list_remove(ctx, session); } if (ctx->session_cache_head == NULL) { ctx->session_cache_head = session; ctx->session_cache_tail = session; session->prev = (SSL_SESSION *)&(ctx->session_cache_head); session->next = (SSL_SESSION *)&(ctx->session_cache_tail); } else { session->next = ctx->session_cache_head; session->next->prev = session; session->prev = (SSL_SESSION *)&(ctx->session_cache_head); ctx->session_cache_head = session; } } BSSL_NAMESPACE_END using namespace bssl; ssl_session_st::ssl_session_st(const SSL_X509_METHOD *method) : x509_method(method), extended_master_secret(false), peer_sha256_valid(false), not_resumable(false), ticket_age_add_valid(false), is_server(false) { CRYPTO_new_ex_data(&ex_data); time = ::time(nullptr); } ssl_session_st::~ssl_session_st() { CRYPTO_free_ex_data(&g_ex_data_class, this, &ex_data); x509_method->session_clear(this); } SSL_SESSION *SSL_SESSION_new(const SSL_CTX *ctx) { return ssl_session_new(ctx->x509_method).release(); } int SSL_SESSION_up_ref(SSL_SESSION *session) { CRYPTO_refcount_inc(&session->references); return 1; } void SSL_SESSION_free(SSL_SESSION *session) { if (session == NULL || !CRYPTO_refcount_dec_and_test_zero(&session->references)) { return; } session->~ssl_session_st(); OPENSSL_free(session); } const uint8_t *SSL_SESSION_get_id(const SSL_SESSION *session, unsigned *out_len) { if (out_len != NULL) { *out_len = session->session_id_length; } return session->session_id; } int SSL_SESSION_set1_id(SSL_SESSION *session, const uint8_t *sid, size_t sid_len) { if (sid_len > SSL_MAX_SSL_SESSION_ID_LENGTH) { OPENSSL_PUT_ERROR(SSL, SSL_R_SSL_SESSION_ID_TOO_LONG); return 0; } // Use memmove in case someone passes in the output of |SSL_SESSION_get_id|. OPENSSL_memmove(session->session_id, sid, sid_len); session->session_id_length = sid_len; return 1; } uint32_t SSL_SESSION_get_timeout(const SSL_SESSION *session) { return session->timeout; } uint64_t SSL_SESSION_get_time(const SSL_SESSION *session) { if (session == NULL) { // NULL should crash, but silently accept it here for compatibility. return 0; } return session->time; } X509 *SSL_SESSION_get0_peer(const SSL_SESSION *session) { return session->x509_peer; } const STACK_OF(CRYPTO_BUFFER) * SSL_SESSION_get0_peer_certificates(const SSL_SESSION *session) { return session->certs.get(); } void SSL_SESSION_get0_signed_cert_timestamp_list(const SSL_SESSION *session, const uint8_t **out, size_t *out_len) { if (session->signed_cert_timestamp_list) { *out = CRYPTO_BUFFER_data(session->signed_cert_timestamp_list.get()); *out_len = CRYPTO_BUFFER_len(session->signed_cert_timestamp_list.get()); } else { *out = nullptr; *out_len = 0; } } void SSL_SESSION_get0_ocsp_response(const SSL_SESSION *session, const uint8_t **out, size_t *out_len) { if (session->ocsp_response) { *out = CRYPTO_BUFFER_data(session->ocsp_response.get()); *out_len = CRYPTO_BUFFER_len(session->ocsp_response.get()); } else { *out = nullptr; *out_len = 0; } } size_t SSL_SESSION_get_master_key(const SSL_SESSION *session, uint8_t *out, size_t max_out) { // TODO(davidben): Fix master_key_length's type and remove these casts. if (max_out == 0) { return (size_t)session->master_key_length; } if (max_out > (size_t)session->master_key_length) { max_out = (size_t)session->master_key_length; } OPENSSL_memcpy(out, session->master_key, max_out); return max_out; } uint64_t SSL_SESSION_set_time(SSL_SESSION *session, uint64_t time) { if (session == NULL) { return 0; } session->time = time; return time; } uint32_t SSL_SESSION_set_timeout(SSL_SESSION *session, uint32_t timeout) { if (session == NULL) { return 0; } session->timeout = timeout; session->auth_timeout = timeout; return 1; } const uint8_t *SSL_SESSION_get0_id_context(const SSL_SESSION *session, unsigned *out_len) { if (out_len != NULL) { *out_len = session->sid_ctx_length; } return session->sid_ctx; } int SSL_SESSION_set1_id_context(SSL_SESSION *session, const uint8_t *sid_ctx, size_t sid_ctx_len) { if (sid_ctx_len > sizeof(session->sid_ctx)) { OPENSSL_PUT_ERROR(SSL, SSL_R_SSL_SESSION_ID_CONTEXT_TOO_LONG); return 0; } static_assert(sizeof(session->sid_ctx) < 256, "sid_ctx_len does not fit"); session->sid_ctx_length = (uint8_t)sid_ctx_len; OPENSSL_memcpy(session->sid_ctx, sid_ctx, sid_ctx_len); return 1; } int SSL_SESSION_should_be_single_use(const SSL_SESSION *session) { return ssl_session_protocol_version(session) >= TLS1_3_VERSION; } int SSL_SESSION_is_resumable(const SSL_SESSION *session) { return !session->not_resumable; } int SSL_SESSION_has_ticket(const SSL_SESSION *session) { return !session->ticket.empty(); } void SSL_SESSION_get0_ticket(const SSL_SESSION *session, const uint8_t **out_ticket, size_t *out_len) { if (out_ticket != nullptr) { *out_ticket = session->ticket.data(); } *out_len = session->ticket.size(); } int SSL_SESSION_set_ticket(SSL_SESSION *session, const uint8_t *ticket, size_t ticket_len) { return session->ticket.CopyFrom(MakeConstSpan(ticket, ticket_len)); } uint32_t SSL_SESSION_get_ticket_lifetime_hint(const SSL_SESSION *session) { return session->ticket_lifetime_hint; } const SSL_CIPHER *SSL_SESSION_get0_cipher(const SSL_SESSION *session) { return session->cipher; } int SSL_SESSION_has_peer_sha256(const SSL_SESSION *session) { return session->peer_sha256_valid; } void SSL_SESSION_get0_peer_sha256(const SSL_SESSION *session, const uint8_t **out_ptr, size_t *out_len) { if (session->peer_sha256_valid) { *out_ptr = session->peer_sha256; *out_len = sizeof(session->peer_sha256); } else { *out_ptr = nullptr; *out_len = 0; } } int SSL_SESSION_early_data_capable(const SSL_SESSION *session) { return ssl_session_protocol_version(session) >= TLS1_3_VERSION && session->ticket_max_early_data != 0; } SSL_SESSION *SSL_magic_pending_session_ptr(void) { return (SSL_SESSION *)&g_pending_session_magic; } SSL_SESSION *SSL_get_session(const SSL *ssl) { // Once the handshake completes we return the established session. Otherwise // we return the intermediate session, either |session| (for resumption) or // |new_session| if doing a full handshake. if (!SSL_in_init(ssl)) { return ssl->s3->established_session.get(); } SSL_HANDSHAKE *hs = ssl->s3->hs.get(); if (hs->early_session) { return hs->early_session.get(); } if (hs->new_session) { return hs->new_session.get(); } return ssl->session.get(); } SSL_SESSION *SSL_get1_session(SSL *ssl) { SSL_SESSION *ret = SSL_get_session(ssl); if (ret != NULL) { SSL_SESSION_up_ref(ret); } return ret; } int SSL_SESSION_get_ex_new_index(long argl, void *argp, CRYPTO_EX_unused *unused, CRYPTO_EX_dup *dup_unused, CRYPTO_EX_free *free_func) { int index; if (!CRYPTO_get_ex_new_index(&g_ex_data_class, &index, argl, argp, free_func)) { return -1; } return index; } int SSL_SESSION_set_ex_data(SSL_SESSION *session, int idx, void *arg) { return CRYPTO_set_ex_data(&session->ex_data, idx, arg); } void *SSL_SESSION_get_ex_data(const SSL_SESSION *session, int idx) { return CRYPTO_get_ex_data(&session->ex_data, idx); } int SSL_CTX_add_session(SSL_CTX *ctx, SSL_SESSION *session) { // Although |session| is inserted into two structures (a doubly-linked list // and the hash table), |ctx| only takes one reference. UniquePtr owned_session = UpRef(session); SSL_SESSION *old_session; MutexWriteLock lock(&ctx->lock); if (!lh_SSL_SESSION_insert(ctx->sessions, &old_session, session)) { return 0; } // |ctx->sessions| took ownership of |session| and gave us back a reference to // |old_session|. (|old_session| may be the same as |session|, in which case // we traded identical references with |ctx->sessions|.) owned_session.release(); owned_session.reset(old_session); if (old_session != NULL) { if (old_session == session) { // |session| was already in the cache. There are no linked list pointers // to update. return 0; } // There was a session ID collision. |old_session| was replaced with // |session| in the hash table, so |old_session| must be removed from the // linked list to match. SSL_SESSION_list_remove(ctx, old_session); } SSL_SESSION_list_add(ctx, session); // Enforce any cache size limits. if (SSL_CTX_sess_get_cache_size(ctx) > 0) { while (lh_SSL_SESSION_num_items(ctx->sessions) > SSL_CTX_sess_get_cache_size(ctx)) { if (!remove_session_lock(ctx, ctx->session_cache_tail, 0)) { break; } } } return 1; } int SSL_CTX_remove_session(SSL_CTX *ctx, SSL_SESSION *session) { return remove_session_lock(ctx, session, 1); } int SSL_set_session(SSL *ssl, SSL_SESSION *session) { // SSL_set_session may only be called before the handshake has started. if (ssl->s3->initial_handshake_complete || ssl->s3->hs == NULL || ssl->s3->hs->state != 0) { abort(); } ssl_set_session(ssl, session); return 1; } uint32_t SSL_CTX_set_timeout(SSL_CTX *ctx, uint32_t timeout) { if (ctx == NULL) { return 0; } // Historically, zero was treated as |SSL_DEFAULT_SESSION_TIMEOUT|. if (timeout == 0) { timeout = SSL_DEFAULT_SESSION_TIMEOUT; } uint32_t old_timeout = ctx->session_timeout; ctx->session_timeout = timeout; return old_timeout; } uint32_t SSL_CTX_get_timeout(const SSL_CTX *ctx) { if (ctx == NULL) { return 0; } return ctx->session_timeout; } void SSL_CTX_set_session_psk_dhe_timeout(SSL_CTX *ctx, uint32_t timeout) { ctx->session_psk_dhe_timeout = timeout; } typedef struct timeout_param_st { SSL_CTX *ctx; uint64_t time; LHASH_OF(SSL_SESSION) *cache; } TIMEOUT_PARAM; static void timeout_doall_arg(SSL_SESSION *session, void *void_param) { TIMEOUT_PARAM *param = reinterpret_cast(void_param); if (param->time == 0 || session->time + session->timeout < session->time || param->time > (session->time + session->timeout)) { // The reason we don't call SSL_CTX_remove_session() is to // save on locking overhead (void) lh_SSL_SESSION_delete(param->cache, session); SSL_SESSION_list_remove(param->ctx, session); if (param->ctx->remove_session_cb != NULL) { param->ctx->remove_session_cb(param->ctx, session); } SSL_SESSION_free(session); } } void SSL_CTX_flush_sessions(SSL_CTX *ctx, uint64_t time) { TIMEOUT_PARAM tp; tp.ctx = ctx; tp.cache = ctx->sessions; if (tp.cache == NULL) { return; } tp.time = time; MutexWriteLock lock(&ctx->lock); lh_SSL_SESSION_doall_arg(tp.cache, timeout_doall_arg, &tp); } void SSL_CTX_sess_set_new_cb(SSL_CTX *ctx, int (*cb)(SSL *ssl, SSL_SESSION *session)) { ctx->new_session_cb = cb; } int (*SSL_CTX_sess_get_new_cb(SSL_CTX *ctx))(SSL *ssl, SSL_SESSION *session) { return ctx->new_session_cb; } void SSL_CTX_sess_set_remove_cb( SSL_CTX *ctx, void (*cb)(SSL_CTX *ctx, SSL_SESSION *session)) { ctx->remove_session_cb = cb; } void (*SSL_CTX_sess_get_remove_cb(SSL_CTX *ctx))(SSL_CTX *ctx, SSL_SESSION *session) { return ctx->remove_session_cb; } void SSL_CTX_sess_set_get_cb(SSL_CTX *ctx, SSL_SESSION *(*cb)(SSL *ssl, const uint8_t *id, int id_len, int *out_copy)) { ctx->get_session_cb = cb; } SSL_SESSION *(*SSL_CTX_sess_get_get_cb(SSL_CTX *ctx))(SSL *ssl, const uint8_t *id, int id_len, int *out_copy) { return ctx->get_session_cb; } void SSL_CTX_set_info_callback( SSL_CTX *ctx, void (*cb)(const SSL *ssl, int type, int value)) { ctx->info_callback = cb; } void (*SSL_CTX_get_info_callback(SSL_CTX *ctx))(const SSL *ssl, int type, int value) { return ctx->info_callback; } void SSL_CTX_set_channel_id_cb(SSL_CTX *ctx, void (*cb)(SSL *ssl, EVP_PKEY **pkey)) { ctx->channel_id_cb = cb; } void (*SSL_CTX_get_channel_id_cb(SSL_CTX *ctx))(SSL *ssl, EVP_PKEY **pkey) { return ctx->channel_id_cb; }